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Train Support Vector Machine Using Fuzzy C-means 
Without a Priori Knowledge for Hyperspectral Image 

Content Classification
Akar H. Taher

Abstract—In this paper, a new cooperative classification method 
called auto-train support vector machine (SVM) is proposed. 
This new method converts indirectly SVM to an unsupervised 
classification method. The main disadvantage of conventional 
SVM is that it needs a priori knowledge about the data to train 
it. To avoid using this knowledge that is strictly required to train 
SVM, in this cooperative method, the data, that is, hyperspectral 
images (HSIs), are first clustered using Fuzzy C-means (FCM); 
then, the created labels are used to train SVM. At this stage, the 
image content is classified using the auto-trained SVM. Using FCM, 
clustering reveals how strongly a pixel is assigned to a class thanks 
to the fuzzification process. This information leads to gaining two 
advantages, the first one is that no prior knowledge about the data 
(known labels) is needed and the second one is that the training 
data selection is not done randomly (the training data are selected 
according to their degree of membership to a class). The proposed 
method gives very promising results. The method is tested on two 
HSIs, which are Indian Pines and Pavia University. The results 
obtained have a very high accuracy of the classification and exceed 
the existing manually trained methods in the literature.

Index Terms—Automatic training, Clustering, Cooperative 
classification, Fuzzy C-means, Support Vector Machine.

I. Introduction
Nowadays, hyperspectral image (HSI) classification attracts 
the attention of researchers due to the rich information they 
contain. Moreover, this type of image can be used in many 
applications for the same reason. Among the applications 
of HSI, mining and geology (Goetz, et al., 1985), ecology 
(Ryan, et al., 2014), civil or military surveillance (Lagueux, 
et al., 2012), agriculture (Lacar, Lewis and Grierson, 2001), 
medicine (Akbari, et al., 2010), food safety and quality (Feng 
and Sun, 2012), and teledetection (Tarabalka, et al., 2010; 
Cariou, Moan and Chehdi, 2020; Alameddine, Chehdi and 

Cariou, 2021; Cariou, Le Moan and Chehdi, 2022; Dong, 
et al., 2022; Sellami and Tabbone, 2022; Sun, et al., 2022) 
can be listed. The problem with most of the methods used 
for HSI classification is that they need a priori knowledge to 
train the classifier.

In the classification process, each pixel vector of the HSI 
must be given a distinct label. In the past two decades, a 
variety of pixel-wise (spectral-based) techniques has been 
used to solve this problem, including k-nearest neighbors 
(Bruzzone and Cossu, 2002), support vector machine (SVM) 
(Bruzzone and Cossu, 2002), and sparse representation 
(Chen, Nasrabadi and Tran, 2013). Among the vast number 
of classification methods, SVM has relatively demonstrated 
good performance for identifying high-dimensional data 
even when a small number of training samples are available 
(Camps-Valls and Bruzzone, 2005). In HSI classification, 
SVM can successfully overcome the Hughes phenomena 
(Hughes, 1968) and the problem of small training sample 
sizes. As a result, SVM and its enhanced algorithms perform 
better than other approaches. However, the problem with 
these approaches is that they strictly need previously labeled 
data to train the SVM. These labeled data are not available in 
all cases and not an easy task to obtain.

In Guo, et al., 2019, the SVM is used with a guided filter, 
in which two fusion methods are used to combine spectral 
and special features. In Shang, et al., 2022, another SVM-
based method is proposed, it also contains a step of filtering. 
The problem with these methods is that they use a filter that 
may cause information loss, and it needs some parameters 
to be fixed for the filtering process. In Pathak and Kalita, 
2019, another spectral-spatial SVM-based classification is 
presented, in this methods, a sliding window of fixed size is 
used to extract the spatial feature; however, the size of the 
window may affect the efficiency of the method. In Li, Li 
and Pan, 2019, SVM is combined with deep learning, and the 
results obtained using this method are very interesting. The 
disadvantage of using deep learning is that it dramatically 
increases the number of features, leading to a very high 
computation time. Many other SVM-based methods are 
proposed in the literature to classify the contents of HSI 
(Tarabalka, et al., 2010; Awad and Khanna, 2015; Wu, et al., 
2016; Guo, et al., 2019; Li, Li and Pan, 2019; Pathak and 
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Kalita, 2019; Zhao, et al., 2020; Mounika, et al., 2021; Ren, 
et al., 2021; Shang, et al., 2022). The problem of all the 
above-mentioned methods is: (1) They need labeled data (a 
priori knowledge) to train the SVM and (2) the training data 
are selected randomly. To this end, the main contribution of 
this study and the proposed method is to overcome these two 
disadvantages, without losing the classification rate accuracy.

The remaining of this paper is structured as follows: after 
this introductory section, section II explains the theory of 
both SVM and FCM, in section III the proposed method is 
introduced, then the section gives details about the datasets 
used in this research to validate the proposed method. The 
final part of this same section gives the results obtained 
using this newly proposed method, the method is called: 
Auto Train Support Vector Machine (ATSVM). Further, the 
results obtained using this new technique are compared to 
those obtained using classic SVM only and other SVM-based 
methods found in the literature, which are all trained with 
Ground Truth labels. In section IV the conclusions are given.

II. Basic Elements
To better understand this approach, its’ basic elements, that 

is, FCM and SVM, are explained in detail below:

A. Fuzzy C-means (FCM)
FCM (Bezdek, Ehrlich and Full, 1984) is a fuzzified 

version of K-means clustering (MacQueen, 1967) which 
adds a fuzzification operation, this fuzzification gives the 
ability to solve more complex clustering problems (Li, 
et al., 2009). More clearly, this method assigns a class 
membership to a data point, which depends on the distance 
of the data point to a particular class compared to all other 
classes. FCM tries to minimize the objective function 
below:

  
( )2

1 1

( )C

NC N
m
ij i j

j i

J u F g
= =

= −∑∑
 

(1)

with the constraint:

  1

1     
NC

m
ij

j

u i
=

= ∀∑
 

(2)

Where:
•	 NC is the number of classes,
•	 N is the number of pixels in the dataset (image),
•	 Fi is the vector of Nf features representing the pixel xi,
•	 g(Cj) is the center of gravity of class Cj,
•	 [1, ]m∈ ∞ : is the fuzzification factor,
•	 and uij represents the entry (i, j) of the partition matrix, with 

0 ≤ uij ≤ 1.
By giving high membership values to data points 

near the center of their clusters, the objective function 
is minimized; in contrast, low membership values 
are provided to data points far from the class center. 
The following equations update the class centers and 
membership functions:
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The four steps of FCM can be centered on the following 
phases:

Step 1: Set the membership matrix 
,   1 ,   1ijU u j NC i N = ≤ ≤ ≤ ≤  randomly between 0 and 1 

and satisfy the condition in Equation (2).
Step 2: Find cluster (class) centers g(Cj) using 

Equation (3).
Step 3: Update the degree of membership uji using 

Equation (4).
Step 4: Redo steps 2 and 3 until the algorithm converges 

(negligible difference between the current membership 
matrix and the previous membership matrix or the maximum 
number of iterations).

B. SVM
SVM is a powerful classification method that was initially 

developed by Boser, Guyon, and Vapnik (Boser, Guyon 
and Vapnik, 1992; Vapnik, 1995). On the other hand, 
SVMs are a collection of connected supervised techniques 
used for regression and classification (Gove and Faytong, 
2012). More clearly, SVM is a classification and regression 
prediction method that automatically avoids over-fitting 
while maximizing predictive accuracy using machine 
learning theory. SVMs can be characterized as systems that 
use a high-dimensional feature space as the hypothesis space 
for a linear function that is trained using an optimization 
theory-based learning technique which incorporates a 
learning bias.

A classification process is composed of training and 
testing data that consist of some data samples (Duda and 
Hart, 1973). Each sample of data in the training group 
contains one target value and several features. SVM aims 
to create a model which predicts the target value of data 
samples in the testing group in which they contain the 
features only (Cristianini and Shawe-Taylor, 2000). Being 
a supervised approach, SVM relies on known labels 
to determine whether the system is operating properly. 
This information gives the desired response, validating 
the accuracy and the efficiency of the system. The first 
step in SVM classification involves determining whether 
characteristics have a close relationship to the recognized 
classes. This is referred to as feature selection or extraction. 
Feature selection and SVM classification together can be 
deployed to identify important elements that are involved in 
whatever processes recognize the classes or not (Cristianini 
and Shawe-Taylor, 2000).
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III. proposed method and datasets used for validation
A. FCM and SVM in Cooperation
In this article, a cooperative approach that combines FCM 

and SVM is proposed in which the data are first clustered 
through using FCM, then the obtained class labels are used 
to train the SVM (see the diagram in Fig. 1).

In this proposed approach, after clustering the datasets 
using FCM, the obtained labels are used to train SVM 
instead of using known labels coming with datasets (known 
labels are not available in all cases). The choice of these 
two methods to cooperate (i.e., FCM and SVM) is not done 
arbitrarily. First, the reason behind choosing FCM is that the 
fuzzy decision gives very important information about the 
classification of each data point (pixel) in the image, that 
is, the degree of membership of each pixel to the specific 
clusters. Thereafter, this information is used to choose the 
pixels which are used to train the SVM. Second, the reason 
behind choosing SVM is that this method has shown very 
promising results in the classification of high-dimensional 
data and HSIs as we mentioned before in the introductory 
section.

B. Datasets
To validate the results of the proposed method, the Pavia 

University and the Indian Pines HSIs are used, as they are 
very well known and widely used HSIs.
Pavia University dataset

The Reflective Optics System Imaging Spectrometer 
(ROSIS-03) optical sensor was used to capture this image 

of an urban area. According to the specs, the ROSIS-03 
sensor captures 115 bands with a spectral coverage of 0.43–
0.86 µm. Each pixel has a spatial resolution of 1.3 m. The 
test site was close to the University of Pavia’s Engineering 
School in Pavia, Italy. The pixels are 610 by 340. Due to 
noise, 12 channels were eliminated. Processing was done on 
the remaining 103 spectral channels. Nine classes of interest 
were considered: Tree, asphalt, bitumen, gravel, metal sheet, 
shadow, bricks, meadow, and soil (Fig. 2) (Tarabalka, et al., 
2010).
Indian Pines dataset

This HSI was captured by the Airborne Visible/Infrared 
Imaging Spectrometer sensor over the agricultural Indian 
Pine test site in Northwest Indiana in the USA. The spatial 
dimension of the image is 145 by 145 pixels and has a 
20 m per pixel spatial resolution. The spectral dimension is 
224 components. The number of components is reduced to 
200 by removing components covering the region of water 

Fig. 1. Proposed method (ATSVM) flow diagram.

Fig. 2. Pavia University image. (a) Three-band color composites. 
(b) Ground truth. (c) Color code and class names.

ba

Fig. 3. Indian Pines image. (a) Three-band color composites. (b) Ground 
truth. (c) Color code and class names.
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c
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Table II
SVM Fixed Parameters

SVM
Model type:

o Preset: Medium Gaussian SVM
o Kernel function: Gaussian
o Box constraint level: 1
o Multiclass method: One-versus-One
o Standardize data: true

Optimizer options:
o Hyperparameter options disabled

Feature selection: Disabled

Table III
FCM Classification Example (U)

Class 1 Class 2 Class 3
Pixel 1 0.9 0.03 0.07
Pixel 2 0.8 0.09 0.11
Pixel 3 0.02 0.88 0.1

Table I
FCM Fixed Parameters

FCM
Distance: Euclidian
Number of iterations: 100
Fuzzification parameter (m): 2
Tolerance: 10e-5
Number of classes: 16 for Indian Pines and 9 for Pavia University
Validation index: 0.85 (new parameter not exiting in standard FCM, added by 
the proposed method)

table IV
Confusion Matrix of the Class-Specific Accuracy (Csa) for Pavia University His Using ATSVM

Class Asphalt Meadows Gravel Trees Painted metal sheets Bare Soil Bitumen Self-blocking bricks Shadows
Asphalt 8134 34 0 0 0 13 0 17 259
Meadows 123 8783 0 61 46 0 1 10 95
Gravel 0 0 981 0 0 0 0 0 0
Trees 0 0 202 6790 160 0 0 22 0
Painted metal sheets 0 0 154 0 963 0 0 0 0
Bare soil 0 0 0 0 0 949 0 0 0
Bitumen 0 0 1 0 0 0 3110 0 0
Self-blocking bricks 0 0 0 3 3 1 0 7184 0
Shadows 0 11 0 0 0 0 165 0 4501
CSA% 96.18068 96.31539 100 94.64734 86.21307 100 99.96786 99.90266 96.2369

absorption: [104–108], [150–163], and 220. Sixteen classes 
of interest were considered: Alfalfa, Corn-notill, Corn-
mintill, Corn, Grass-pasture, Grass-trees, Grass-pasture-
mowed, Hay-windrowed, Oats, Soybean-notill, Soybean-
mintill, Soybean-clean, Wheat, Woods, Buildings-Grass-
Trees-Drives, and Stone-Steel-Towers (Fig. 3) (Tarabalka, 
et al., 2010).

C. Results

Algorithms used and fixing their parameters
To test the proposed approach, the FCM and SVM 

algorithms of MATLAB™ version 2021 are used. The fixed 
parameter for each algorithm is given in Tables I and II.

Validation process
To validate the proposed method (ATSVM), the method 

is applied to the previously presented datasets. First, the 
data are organized in a matrix of (SxF) format (samples in 
rows and features in columns). Then, data are clustered with 
the FCM algorithm. The output of FCM is a fuzzy decision 
for each data sample (pixels in the HSI). In the proposed 
method, a validation parameter index is introduced which is 
fixed to 0.85. This parameter is used to select the data points 
used for training the SVM algorithm (the data points with 
membership degree ≥0.85 are chosen for training). More 
clearly, this index is compared to the degree of membership 
of each pixel after the FCM clustering, for example, if the 
whole data are clustered to three classes using FCM, each 
pixel will have a degree of membership to the three class and 
the summation of all the degrees of a pixel is equal to one 
(Equation 2 and Table III). The reason behind using the pixels 
with a high degree of membership to a class is that in the case 
classification, confidence is high, for more clarification, the 
example in Table III. In this case, Pixels 1 and 3 are chosen for 
training SVM, but Pixel 2 is not chosen as its greatest degree 
of membership is smaller than the fixed threshold (0.85).

After choosing the pixels with high confidence of 
classification, their classification result is defuzzied. This 
is done by giving the label of where the membership 
degree is the largest, by this step, each pixel will get a 
label that indicates the class they belong to. In the example 
in Table III, Pixel 1 will get Label 1 and Pixels 3 will get 
Label 2, as the maximum membership degree is in Classes 1 
and 2, respectively. These labels are used to train the SVM. 
Normally, these labels need to be known a priori, but in this 
proposed method, they are created by the FCM algorithm to 
train the SVM. At this point, the SVM algorithm is trained 
using these created labels. The pixels that are not used for 
training (as Pixel 2 in Table III) are used for testing.

The results of ATSVM for Pavia University and Indian 
Pines are shown in Table IV and it is observed that the 
proposed methods have the correct classification rate equal to 
0% for some classes. This is because these classes contain a 
little number of samples and the SVM classier is not trained 
sufficiently by this number of samples. This problem is no 
unique, and it is repeated in other methods found in the 
literature (Tables V and VI). To show the efficiency of the 
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Table VI
Comparison of ATSVM Applied on Indian Pines Hsi With Other Methods Found in The Literature

Class names ATSVM SVM SVM+ISODATA SVM+EM SVM-MSF SVM-MSF+MV GA-SVM
Alfalfa 0 74.4 12 0 94.9 94.9 88.96
Corn-notill 100 78.2 79.32 71.65 91 93.2 75.83
Corn-mintill 100 69.6 84.95 84.15 95.7 96.6 68.84
Corn 70.46 91.9 75.83 60.66 95.7 95.7 82.51
Grass-pasture 100 92.2 93.75 93.97 94.6 94.6 87.54
Grass-trees 100 91.7 94.8 99.11 92.4 97.3 90.68
Grass-pasture-mowed 0 100 91.67 93.97 100 100 71.43
Hay-windrowed 100 97.7 97.51 99.09 99.8 99.8 99.58
Oats 100 100 16.67 0 100 100 87.51
Soybean-notill 100 82 83.85 82.02 98 93.9 72.84
Soybean-mintill 0 58 93.16 95.05 82 82 74.52
Soybean-clean 83,14 87.9 85.17 90.05 86 97.2 79.08
Wheat 99.51 98.8 93.19 98.95 99.4 99.4 96.08
Woods 99.52 93 97.17 95.36 97.6 99.7 92.41
Buildings-grass-trees-drives 97.92 61.5 79.53 69.3 68.8 68.8 85.78
Stone-steel-towers 0 97.8 86.05 86.05 95.6 95.6 89.13
OA% 96.62 78.2 88.53 87.25 88.4 91.8 82.83

table VII
Confusion Matrix of the Class-Specific Accuracy (Csa) for Indian Pines Hsi Using ATSVM

Class names Alfalfa Corn- 
notill

Corn- 
mintill

Corn Grass- 
pasture

Grass- 
trees

Grass- 
pasture- 
mowed

Hay- 
windrowed

Oats Soybean- 
notill

Soybean- 
mintill

Soybean- 
clean

Wheat Woods Buildings 
-grass- 

trees-drives

Stone- 
steel- 

towers
Alfalfa 0 46 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Corn-notill 0 1428 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Corn-mintill 0 0 830 0 0 0 0 0 0 0 0 0 0 0 0 0
Corn 0 0 0 167 70 0 0 0 0 0 0 0 0 0 0 0
Grass-pasture 0 0 0 0 483 0 0 0 0 0 0 0 0 0 0 0
Grass-trees 0 0 0 0 0 730 0 0 0 0 0 0 0 0 0 0
Grass- 
pasture-mowed

0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0

Hay-windrowed 0 0 0 0 0 0 0 478 0 0 0 0 0 0 0 0
Oats 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0
Soybean-notill 0 0 0 0 0 0 0 0 0 972 0 0 0 0 0 0
Soybean-mintill 0 0 0 0 0 0 0 0 0 0 2455 0 0 0 0 0
Soybean-clean 0 0 0 0 0 0 0 0 0 0 94 499 0 0 0 0
Wheat 0 0 0 0 0 0 0 0 0 0 0 1 204 0 0 0
Woods 0 0 0 0 0 0 0 0 0 0 0 0 0 1259 6 0
Buildings-grass 
-trees-drives

0 0 0 0 0 0 0 0 0 0 6 0 0 2 378 0

Stone- 
steel-towers

0 0 0 0 0 0 0 0 0 0 93 0 0 0 0 0

CSA % 0 100 100 70.46 100 100 0 100 100 100 100 84.14 99.51 99.52 97.92 0

Table V
Comparison of ATSVM Applied on Pavia University Hsi with Other Methods Found in the Literature

Class names ATSVM SVM SVM+Watershed SVM+PartClust SVM-HSEG GS-SVM
Asphalt 96.18 84.93 93.64 90.72 94.77 93.50
Meadows 96.31 70.79 75.09 92.73 89.32 95.50
Gravel 100 67.16 66.12 82.09 96.14 86.00
Trees 94.64 97.77 98.56 99.21 98.08 97.50
Painted metal sheets 86.21 99.46 99,91 100 99.82 99.50
Bare soil 100 92.83 97.35 96.78 99.76 98.08
Bitumen 99.96 90.42 96.23 92.46 100 99.00
Self-blocking bricks 99.9 92.78 97.92 97.8 99.29 93.50
Shadows 96.23 98.11 96.98 97.74 96.48 98.38
OA% 96.77 81.01 85.42 93.59 93.85 96.06



 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11025 27

proposed method, the obtained results are compared with other 
SVM-based methods proposed in the literature (Tarabalka, 
et al., 2008; Tarabalka, Benediktsson and Chanussot, 2009; 
Fauvel, et al., 2013; Zhao, et al., 2020). It is important to 
mention, all these methods (unlike ATSVM) require previously 
known labels to train the SVM. The comparing results for 
the test images are shown in Tables V-VII, respectively, with 
overall accuracy (OA) of 96.77% for Pavia University and 
96.62% for Indian Pines HSIs.

It is observed that the proposed methods have the correct 
classification rate equal to 0% for some classes. This is 
because these classes contain a little number of samples and 
the SVM classier is not trained sufficiently by this number 
of samples. This problem is no unique and it is repeated in 
other methods found in the literature (Tables V and VI). To 
show the efficiency of the proposed method, the obtained 
results are compared with other SVM-based methods 
proposed in the literature (Tarabalka, et al., 2008; Tarabalka, 
Benediktsson and Chanussot, 2009; Fauvel, et al., 2013; 
Zhao, et al., 2020). It is important to mention, all these 
methods (unlike ATSVM) require previously known labels to 
train the SVM. The comparing results for the test images are 
shown in Tables V and VI.

IV. Conclusion
A new unsupervised SVM-based clustering method is 
proposed. It can be concluded from the obtained results that 
the proposed method (ATSVM) is giving excellent results. In 
addition, the advantage of the proposed method is that it does 
not need a priori knowledge to train the SVM (no previously 
known labels are needed). Further, using FCM enables the 
choice of the train data instead of choosing them randomly. 
The method works well on big classes and it is less efficient 
on smaller classes. The problem of low accuracy in small 
classes is not unique to our proposed method (detailed results 
are shown in the previous section). FCM clustering needs the 
number of clusters to be defined. The future work will be, 
first improve the FCM algorithm to detect the correct number 
of clusters automatically and second calculate the introduced 
fixed threshold automatically.
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