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Abstract–Electrocardiogram (ECG) analysis is widely used by 
cardiologists and medical practitioners for monitoring cardiac 
health. A high-performance automatic ECG classification system is 
challenging because there is difficulty in detecting and categorizing 
different waveforms in the signal, especially in manual analysis of 
ECG signals, which means, a better classification system is needed 
in terms of performance and accuracy. Hence, in this paper, the 
authors propose an accurate ECG classification and monitoring 
system called convolutional neural network-k nearest neighbor 
(CNN-kNN). The proposed method utilizes 1D-CNN and kNN. 
Unlike the existing techniques, the examined technique does not 
need training during classifying the ECG signals. The CNN-kNN 
is evaluated against the PhysioNet’s MIT-BIH and PTB diagnostics 
datasets. The CNN is fed using the ECG beat raw signal directly. 
In addition, the learned features are extracted from the 1D-CNN 
model and its dimensions are reduced using two fully connected 
layers and then fed to the k-NN classifier. The CNN-kNN model 
achieved average accuracies of 98% and 97.4% on arrhythmia and 
myocardial infarction classifications, respectively. These results are 
evidence of the great ability of the proposed model compared to the 
mentioned models in this article.

Index Terms—Convolutional neural network, 
Electrocardiogram classification arrhythmia, K-nearest 
neighbor.

I. Introduction
An electrical activity generated by the heart is called an 
electrocardiogram (ECG) signal. The ECG signal conveys 
information which is reflection the properties of the heart 
health condition. Therefore, diagnosis of the ECG signal is the 
main way to know the heart health condition. Consequently, 
analysis of the ECG signal became interesting to categorize 
the heart health condition. Due to certain limitations in 
disease classification based on the ECG including variance 

ECG morphology, Machine learning techniques have been 
widely applied to develop automatic heartbeat classification 
systems (Luz, et al., 2016). Machine learning techniques 
have been widely applied to develop automatic heartbeat 
classification systems (Luz, et al., 2016). Three different 
architectures of machine learning have been used for ECG 
diagnosis, namely traditional machine learning, deep machine 
learning, and hybrid machine learning architecture.

Effective feature extraction technique is the key success of 
traditional machine learning. In Saini, Singh, and Khosla (2013), 
a model developed based on the k nearest neighbor (kNN) 
classifier and some features that were adopted by applying a 
digital band-pass filter. Discrete wavelet transform (DWT) was 
addressed to an effective feature for the ECG signal and fed to 
the kNN algorithm (Bouaziz, Boutana and Oulhadj, 2019). The 
DWT was to train support vector machine (SVM). Venkatesan, 
et al. (2018) and Smíšek, et al. (2017) reported that a trained 
SVM through some morphological features could improve the 
accuracy rate for ECG classification. Mel Frequency Cepstrum 
Coefficient was used to feed artificial neuron networks for ECG 
Signals Classification Boussaa, et al. (2016). Due to the ECG 
signal is non-stationary signal, more complex methods for 
feature extraction have been conducted. Therefore, determining 
the best suited features is time-consuming and tedious work 
(Khatibi and Rabinezhadsadatmahaleh, 2019).

For deep machine learning, mass consideration is about 
having enough data to train the machine and turn parameters 
Litjens, et al. (2017), Shima, Nakashima and Yasuda (2018). 
Convolutional neural network (CNN) has widely been 
used for variance applications including ECG classification 
(Labati, et al., 2018), (Zubair, Kim and Yoon, 2016). They all 
reported that the CNN model is straightforward to apply and 
can improve the automatic heartbeat classification system. 
CNN has been used in two forms 1 and 2 directional. For 
instance, Kiranyaz, Ince, and Gabbouj, 2016a developed 
an ECG diagnosis system based on 1D-CNN and the ECG 
signal was fed to the 1D-CNN directly. However, for 
2D-CNN, the ECG signal must be transformed into two two-
dimensional forms. For instance, in Zhai and Tin (2018), a 
model based on 2D-CNN was proposed, where the heartbeats 
were transformed into dual dual-beat coupling matrix and 
given to the CNN model as 2-D input.
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The hybrid machine learning system is a model that 
consists of traditional machine learning and deep learning 
algorithms or a combination of two deep learning algorithms. 
In Khatibi and Rabinezhadsadatmahaleh (2019), CNN and 
kNN have participated in extracting the features. The features 
were later given to the SVM for ECG beat classification 
and arrhythmia detection. Wang in (Wang, 2020) proposed 
a model by combining CNN and the modified Elman neural 
network, and his results show that the model can improve the 
accuracy of the ECG beat classification system. The CNN 
and long short-term memory (LSTM) were examined in Oh, 
et al. (2018). The CNN part was responsible for extracting 
features and LSTM was responsible for classifying the 
categories of the ECG beat.

As mentioned, in most of the existing techniques, one more 
technique was utilized for training the features, which may 
affect the performance of the model. To date, no techniques 
exist for utilizing the kNN classifier for classifying the 
features without requiring to train the features. Moreover, 
as mentioned by Homaeinezhad, et al. (2012) and Zhang 
and Zhou (2005), kNN is counted as one of the well-known 
and fastest machine learning classifiers. Hence, utilizing it in 
computing any models will affect the model’s accuracy and 
prediction. In this paper, a hybrid machine-learning model 
is developed for heartbeat classification. The model contains 
the 1D-CNN to extract the features and the kNN classifier 
to classify the feature signal. The CNN-kNN model is a 
featureless model as it does not need to have any Handcrafted 
features. The novelty and importance of the proposed work 
are that the kNN does not need further training to classify 
the ECG. The main contributions of the proposed model are 
as follows:
●	 Designing and implementing a high-performance ECG 

classification system.
●	 Utilizing the 1D-CNN as feature extractor.
●	 Using the kNN classifier for the feature classification.
●	 For classifying the ECG, no further training of the extracted 

features is required.

The rest of this paper is organized as follows. Section 2 
explains the background of the area. Section 3 presents the 
proposed method. Section 4 presents results and a discussion of 
the proposed method on different tasks and a comparing it with 
the works in the literature. Finally, Section 5 concludes the paper.

II. Background
The traditional main steps involved in any classification 

system are preprocessing, feature extraction, and classifier 
learning. Automatic heartbeat classification is one of the 
applications that should follow the same process. In this paper, 
since the prepared data in Li and Zhou (2016); Acharya, et al., 
(2017a); Kachuee, Fazeli, and Sarrafzadeh (2018) are utilized, 
the preprocessing step is not focused on. For the feature 
extraction step, the 1D-CNN employed to extract the learned 
features which they fed the kNN classifier. In this section, a 
brief background about CNN and k-NN is presented.

A. k-Nearest Neighbors Classifier
kNN is one of the well-known classification methods in the 

world of machine learning, which is a supervised algorithm 
with a desirable computational speed along with acceptable 
classification accuracy (Zhang and Zhi-Hua, 2005). The 
training stage is not required for the kNN classifier but rather 
it is based on a simple mathematical theory (Jiang, et al., 
2007). The kNN classifier imposes the lowest computational 
rate N compared to the most of the other classification 
methods, such as SVM and artificial neural networks (ANN) 
classifiers (Homaeinezhad, et al., 2012). Consequently, kNN is 
much faster than the SVM and ANN algorithms. To formulate 
the kNN classification algorithm, assume that the pair (xi, 
f(xi)) contains the feature vector xi and its corresponding 
label f(xi) where f(xi) ∈ {1,2,…, n} and i = 1,2,…, N (n and 
N is the number of classes and the number of train feature 
vectors, respectively). The principal idea behind kNN is to 
measure the distance between feature vectors such that the 
nearest neighbor for the tested sample makes a decision about 
the label of the features (Aljojo, 2022). The majority voting 
strategy among the k-nearest samples is basically adopted in 
this classifier. The distance for the features can be formulated 
in (1) Homaeinezhad, et al. (2012).

d i j f x xi j, ,� � � � �  (1)

Where, f(xi, xj) is a scalar distances function. Three 
common distance functions have been widely used for 
determining the distance as given in (2), (3), and (4) 
Homaeinezhad, et al. (2012).
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Where, Equation (2) is named generalized distance and 
when the weight matrix Σ = Ι, the famous Euclidean norm 
will be reached. Equation (3) is called Minkowski distance 
of degree r and when r = 2, again the Euclidean distance 
appears. Furthermore, Equation (4) is known as City Block 
distance and it is used in many pattern recognition cases 
(Homaeinezhad, et al., 2012).

B. CNN
CNN is a kind of deep neural network that was originally 

proposed for 2D input. It is a powerful machine learning 
tool for learning features from the input raw data. CNN 
outperforms the traditional machine learning models for image 
classification (Khan, et al., 2020). One of the modifications of 
2D-CNNs is the 1D-CNNs, which has recently been applied 
in many applications (Ince, et al., 2016; Kiranyaz, Ince, and 
Gabbouj, 2016b; Acharya, et al., 2017b; Kiranyaz, et al., 2019). 
These researches have clarified that for certain applications, 
1D-CNNs are preferable one-dimensional-based applications 
due to the low complexity, small number of hidden layers and 
neurons, and low cost of implementation. Typically, any CNN 
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models are mainly composed of two parts: Feature extraction 
and classification. The feature extraction section is responsible 
for extracting features from the ECG signals automatically, 
which usually consists of some layers such as convolution and 
pooling layers, whereas the classification part is in charge of 
classification decisions. The classification part is identical to a 
typical Multi-layer Perceptron (MLP) and is often referred to 
as fully connected layers (Kiranyaz, et al., 2015).

The configuration of any 1D-CNN explores some important 
processes as shown below:
●	 Initialize weights and biases
●	 Feed forward process applies from the input layer to the 

output layer to find outputs of each neuron at each layer. The 
process is formulated in (5) (Kiranyaz, et al., 2020; Rautela, 
et al., 2020).
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Where, xk
l  represents the input of the kth neuron at layer 𝑙, 

bk
l  is a bias of the kth neuron at layer 𝑙, si

l−1  and wik
l−1  are the 

output of the ith neuron at layer 𝑙 – 1 and the kernel from the 
ith neuron at layer 𝑙 − 1 to the kth neuron at layer 𝑙, 
respectively. Moreover, 𝑐𝑜𝑛𝑣1𝐷 is used to perform the 
convolution process between w sik

l
i
l− −1 1and .

●	 Backpropagation process: start from computing delta error 
at the output layer and back-propagate it to the first hidden 
layer to compute the delta errors. The Equation (6) is a delta 
error (Kiranyaz, et al., 2020).
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Where, E is the mean-squared error (MSE), yi
l−1 � is 

intermediate output, and ∆k
t �  is defined as a delta error.

●	 Post-process to compute the weight and bias sensitivities.
●	 Update the weights and biases.

III. Methodology
A. Datasets
In studies that set out to classify ECG records, authors 

Martis, et al. (2013a); Li and Zhou (2016); Acharya, et al. 

(2017b); Kachuee, Fazeli, and Sarrafzadeh (2018) used two 
different sources of data, namely PTB Diagnostic ECG and 
PhysioNet MIT-BIH Arrhythmia. Both of the sources are 
composed of ECG records which were recorded from different 
subjects; the PTB diagnostics dataset registered from 290 
subjects at a sample rate of 1000 Hz (Sadhukhan and Mitra, 
2012), whereas the PhysioNet MIT-BIH Arrhythmia dataset 
are recordings of 47 subjects at a sample rate of 360 Hz 
(Goldberger, et al., 2000). Table I illustrates a summary of 
mappings between beat annotations in five categories in 
accordance with the Association for the Advancement of 
Medical Instrumentation (AAMI) standard (AAMI and others, 
1998). In this paper, the author uses ECG lead II resampled to 
the frequency sample of 125 Hz for MIT-BIH.

B. Preprocessing
A preprocessing for the ECG signals is performed in this 

work based on a set of steps as shown below:
1. Picking a 10-s window from a signal of ECG after division 

of the signal to 10-s windows.
2. The values of the amplitude were normalized to the range 

of zero and one.
3. Relying on the zero crossing of the first derivative, trace the 

set of all local maximums.
4. Implementing a threshold of 0.9 on the normalized value 

of the local maximums to find the set of ECG R peak 
candidates.

5. The median of the R-R time interval was considered as the 
nominal heartbeat period of that window (T).

6. Choosing a signal part of 1.2T length for each R-peak.
7. Unify the signal length by applying padding.

It is important to note that in the extracting R-R interval 
method, no form of filtering was used and to use these 
extracted beats as an input to the subsequent processing parts, 
all the beats have equal length.

C. CNN-kNN Proposed Model
The proposed model for heartbeat classification is 

developed based on an integration between CNN and kNN 
as shown in Fig. 1. The proposed model is developed 
based on integrating into two common machine learning 
algorithms, including the CNN and the kNN. The CNN 

TABLE I
Summary of Mappings between Beat Annotations and AAMI EC57

AAMI class MIT-BIH heartbeat types

Normal beat (N) Normal beat (N) Left bundle branch 
block beat (L)

Right bundle branch 
block beat (R)

Atrial escape beat (e) Nodal (junctional) 
escape beat (j)

Supraventricular ectopic beat (S) Atrial premature beat (A) Aberrated atrial 
premature beat (a)

Nodal (junctional) 
premature beat (J)

Supraventricular 
premature beat (S)

 

Ventricular ectopic beat (V) Premature ventricular 
contraction (V)

Ventricular escape 
beat (E)

   

Fusion beat (F) Fusion of ventricular and 
normal beat (F)

    

Unknown beat (Q) Paced beat (/) Fusion of paced and 
normal beat (f)

Unclassified beat 
(Q)

 

AAMI: Association for the Advancement of Medical Instrumentation
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structure contains 8 layers including two convolutional and 
three fully connected layers. The number of neurons in the 
output layer depends on the adopted dataset (for instance, 5 
neurons for PhysioNet’s MIT-BIH and 2 neurons for PTB 
Diagnostics datasets). The other details of the CNN model 
can be found in Table II. In the first stage, the CNN is 
trained by the ECG datasets, where the hyperparameters of 
the CNN model were tuned using nine-fold cross-validation 
to get the least error rate. Then, the features are adopted from 
all the fully connected layers. The obtained features from 
each of the layers are fed to the kNN separately and the best 
optimum features are observed from the first fully connected 
layer which consists 50 nodes. In the final stage, the obtained 
features are classified by the kNN, where the number of k 
was tuned by the same strategy (cross-validation) that was 
used to tune the hyperparameter of CNN. In general, the 
CNN part of the proposed model is responsible for executing 
two vital tasks, which are extracting the effective features 
from the heartbeat signal and reducing the number of features 
using the fully connected layers. Moreover, the kNN part is 
responsible for classifying the learned features.

D. Performance Metrics
Inspired by the previous studies that have proposed models 

for ECG arrhythmia detection [1], [3], [7], [15], [21], [26] 
(Luz, et al., 2016; Oh, et al., 2018; Zhai and Tin, 2018; 
Bouaziz, Boutana and Oulhadj, 2019), the performance 
metrics that are conducted in this study include accuracy, 
precision, and recall. The accuracy rate shows the overall 
ability of the model to classify ECG signals correctly as 

presented in (7). Recall is the rate of correctly classified 
beats of one class and the total beats classified as that class. 
It can be calculated by (8). Precision is the ratio of correctly 
classified beats of one class among the total beats belonging 
to that class, which is formulated as (9) (Foody, 2023)

Accuracy=
TP + TN

TP+TN+ FP + FN  (7)

Fig. 1. Architecture of convolutional neural network-k nearest neighbor proposed model.

TABLE II
Detail of the 1D-CNN Model

No. 
layer

Name Description

1 Input 187 × 1 × 1 input with 'zero center' normalization
2 Convolution 50 3 × 3 convolutions with  

stride [1 1] and padding 'same'
3 Convolution 100 3 × 3 convolutions with  

stride [1 1] and padding 'same'
4 Fully connected 50 fully connected layer
5 Fully connected 20 fully connected layer
6 Fully connected Either 2 or 5 fully connected  

layer depending on the dataset
7 Softmax Activation function for the  

last Fully Connected layer
8 Classification Output cross-entropy 

TABLE III
NN Parameters

Parameters Value Parameters Value
Optimization method Adam Mini batch size 128
Initial learn rate 0.01 Number of iteration 864
Number of epochs 25 Activation function in output layer Softmax
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Recall=
TP

TP + FN
 (8)

Precision =
TP

TP + FP  (9)

Where, TP is true positive, FP is false positive, TN is true 
negative, and FN is false negative.

E. Experiments’ Setup
For any model like CNN and KNN, some parameters 

should be tuned to obtain the optimum values to improve the 
performance of the model. Regarding the kNN model, and 
to tune the parameter k, a 9-fold cross-validation approach 
is adopted. The k parameter is tuned to 5 and the metric 
is fixed as Euclidean distance. Following the same 9-fold 
cross-validation presented above, the number of convolutional 
layers is tuned to 2 layers, where they include 50 and 
100 nodes, respectively, both with ReLu activation function. 
The number of hidden fully connected layers is set as two 
with the number of nodes equal to 50 and 20, respectively. The 
output layer’s number of nodes is set according to the number 
of classes involved in the experiments. The optimization 
technique adopted in this network is Adam (Table III). The 
learned features are extracted from different fully connected 
layers to produce four versions of features. Consequently, four 
experiments per each dataset are conducted in this work as 
shown in the next section.

IV. Results and Discussion
To present the usefulness of the proposed model and 

validate the performance of each of the four versions of the 
learned features, four experiments per dataset are conducted 
and their accuracy is presented in Table IV. In both of the 
datasets, the same pattern of having the highest accuracy 
using the larger feature number is clearly seen. Learn features 
transformed into 50 dimensions outperform other versions 
of extracted features. Another observation is reducing the 
accuracy when the features are extracted from the softmax 
layer, i.e., after the softmax function is applied to the values 
of the features that are mapped to the output layer. This 
shows the non-usefulness of the softmax transformation for 
the kNN classifier.

The implementation of the proposed model includes two 
phases since the CNN-kNN method is an integrated model 
using CNN for extracting features and kNN as the classifier. 
In the first phase, an MPL-based 1D-CNN model is evaluated 
on PhysioNet MIT-BIH Arrhythmia dataset. Inspired by the 
previous works, which are cited in Table V, the dataset is 
set as 21892 and 87554 heartbeats for testing and training, 

respectively. As shown in the table, the accuracy rate of the 
proposed model is 98%, which is much higher compared to 
the second highest rate by the 1D-CNN, which is 96.8%. The 
reasonable accuracy of the CNN-kNN refers to the ability 
of the kNN classifier to classify the features of ECG. The 
second phase is about extracting features from the same 
1D-CNN model but instead of utilizing the MLP, kNN is 
adopted as a classifier called CNN-kNN. The result shows 
that, in terms of accuracy, the ability to identify correct 
samples, and the quality of prediction, the 1D-CNN model 
and CNN-kNN model outperformed several state-of-the-art 
studies. It is noticeable that the proposed CNN-kNN is able 
to outperform the 1D-CNN as presented in Table V.

MI detection is also treated as a two-class classification 
problem (infracted and non-infracted classes). The length of 
PTB diagnostics dataset is 14552 samples including 4046 
normal and 10506 abnormal. Based on relevant research 
in the literature, k fold and hold out (20% testing and 80% 
training) cross-validation have been used to evaluate the 
utilized dataset for MI classification. In this paper, a 5-fold 
cross-validation is adopted. The result in Table VI shows 
that the performance of 1D-CNN does not surpass all the 
state of art results. However, the proposed CNN-kNN 
outperforms the state-of-the-art model performances. As 
shown in Table VI, the proposed model has a great ability 
in classifying and predicting the heartbeats compared to the 
participated algorithms, and the result of the accuracy metric 
is an evidence for this. In addition to the superior accuracy 

Table IV
Accuracy of All Experiments

Dataset/layers First fully-connected (50 nodes) Second fully-connected (20 nodes) Last fully connected 5, 2 nodes for MIB, PTB Softmax layer
MIB 98 97.93 97.18 96.86
PTB 97.4 96.6 94.23 93.25

TABLE VI
Comparison of MI Classification Results

Work Accuracy (%) Precision (%) Recall (%)
Proposed (CNN-kNN) 96.78 95.9 96.26
1D-CNN 93.64 92.7 92.05
Kachuee Fazeli and 
Sarrafzadeh, 2018

95.9 95.2 95.1

Acharya, et al. (2017a) 93.5 92.8 93.7
Safdarian Dabanloo and 
Attarodi (2014)

94.7 - -

CNN-kNN: Convolutional neural network-k nearest neighbor

TABLE V
Comparison of Heartbeat Classification Results

Work Approach Accuracy (%)
Proposed (CNN-kNN) CNN-kNN 98
CNN 1D-CNN 96.8
Kachuee, Fazeli and 
Sarrafzadeh (2018)

Deep residual CNN 93.4

Acharya, et al. (2017c) Augmentation+CNN 93.5
Martis, et al. (2013b) DWT+SVM 93.8
Li and Zhou (2016) DWT+Random forest 94.6
CNN-kNN: Convolutional neural network-k nearest neighbor, DWT: Discrete Wavelet 
Transform, SVM: Support vector machine
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of the propose method, the CNN-kNN technique has a great 
prediction, which outperformed the participated models 
in the table. The great prediction of the proposed model is 
supported by the result of the Precision. The result of the 
Recall metric proves the ability of the model to identify high 
percentage of samples correctly.

V. Conclusion
This study has proposed a model for ECG heartbeat 

classification based on CNN-kNN models. The 1D-CNN 
model is used to extract the features from the ECG signal 
and then fed to the kNN classifier. According to the results, 
the proposed method is able to make predictions on both 
arrhythmia and MI tasks whereas outperforming the 
accuracies of the state-of-the-art methods in the literature. 
The CNN-kNN model does not require the handcrafted 
feature as well as no further training is needed unlike any 
integrated model, as the kNN classifier has no training stage. 
However, the proposed model still needed to be validated by 
various datasets in this field to be more generalized.
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