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Abstract—Kerosene from various refineries and crudes is 
used for heating and other purposes in many countries like Iraq; 
therefore, it is important to identify its source to recognize and 
tax any adulteration. In this study, a fast classification technique 
for kerosene marketed in Iraq was developed with the goal of 
identifying its quality. The samples were categorized using a 
supervised partial least squares discriminant analysis (PLS-DA) 
approach. Multivariate analyses using agglomerative hierarchal 
clustering and principal component analysis were utilized to 
identify outliers and sample dissimilarities. The dataset was divided 
into calibration and prediction sets. The prediction set was used 
to evaluate the model’s separation performance. The Q2 cross-
validation was applied. The PLS-DA models achieved significant 
accuracy, sensitivity, and specificity, showing strong segregation 
ability, notably for the calibration set (100% accuracy and 1.00 
sensitivity). It was found that kerosene processing can be classified 
rapidly and non-destructively without the need for complicated 
analyses, demonstrating the best results for classification even 
when compared with the classification outcomes of other fuels. 
This PLS-DA approach has never been looked at before for process 
quality detection, and the results are comparable to direct kerosene 
classification with soft independent modeling of class analogy and 
support vector machines.

Index Terms—Supervised discrimination technique, 
Modeling, Kerosene processing, Quality control, PLS-DA, 
Machine learning tool.

I. Introduction
Kerosene is a mixture of hydrocarbons with carbon atom 
counts ranging from 6 to 16, and kerosene can be utilized 
in a variety of applications, including as an aviation fuel 
and a home heating fuel. It is isolated as a straight-chain 
component of petroleum; kerosene is produced primarily 

through fractional distillation of crude oil (Lam, et al., 2012). 
N-alkane, alkyl benzene, and naphthalene are the main
components of kerosene (Kaltschmitt and Deutschmann,
2012). Its volatility is between that of gasoline and diesel
fuel, and its boiling point range is between 150 and 350°C.

The refineries at Bazian and Kirkuk are the main sources 
of kerosene for the region of study in north-eastern Iraq. 
A total of 34,000 barrels/day is produced at the 2009-founded 
Bazian refinery, which uses only atmospheric distillation 
and hydrotreating equipment. The Taq-Taq oil field is the 
principal source of crude oil for the Bazian refinery (Ali 
and Khodakarami, 2015). The Kirkuk oil field supplies the 
crude for the Kirkuk refinery, which began operations in 
1938 and has seen its capacity rise over the years to the 
current 30,000 barrels/day. Atmospheric distillation, vacuum 
distillation, catalytic reforming, and hydrotreating are just 
some of the process units in the Kirkuk refinery (Abdullah 
and Daij, 2021). Both Taq-Taq and Kirkuk crudes can be 
refined into kerosene at about the same rate (25.6% for Taq-
Taq and 23.6% for Kirkuk), but Taq-Taq crude has a higher 
API (47.52) and is more expensive (Karim, Khanaqa and 
Shukur, 2017, Naman, et al., 2019). When comparing the 
Bazian refinery to the Kirkuk refinery, the Nelson complexity 
index, which is used to define the sophistication of a refinery 
(Kaiser, 2017), for the former is 2.26 whereas the latter is 
2.03 (Abdullah and Daij, 2021).

Therefore, there must be a method to categorize and 
identify the source of locally produced kerosene because each 
type has a distinct composition, which affects performance as 
well as the possibility of adulteration and taxation. Several 
standards can be used to control the quality of middle 
distillates like kerosene. They are time-consuming, require 
many samples, and have expensive measurement equipment. 
It has proven possible to identify sources, detect adulteration, 
or classify fuels using chemometrics analysis with spectral or 
property input data (Barra, et al., 2020, De Paulo, et al., 2014, 
Comesaña-García, et al., 2013, Dago Morales, et al., 2008). 
The principle component analysis (PCA) and hierarchical 
cluster analysis (HCA) multivariate calibration techniques 
have been used by Tanaka, et al. (2011) to detect solvent 
traces in gasoline. They found 83.8% and 77.1% sensitivity 
results for calibration and external sets, respectively, by 
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adopting the soft independent modeling of class analogy 
(SIMCA) algorithm. Dadson, Pandam, and Asiedu (2018) 
have looked at the possibility of classifying gasoline based 
on four added adulterants using the same approach except for 
HCA. The SIMCA classification model has a sensitivity of 
100% for the calibration set and 75% for the external set.

Furthermore, Mohammadi, et al. (2020) employed 
attenuated total reflectance-Fourier transform infrared (ATR-
FTIR) spectroscopy with partial least squares discriminant 
analysis (PLS-DA) to sort crude oil samples into groups. 
This created a model that was 100% accurate in terms of 
both sensitivity and specificity. Mazivila, et al. (2015) used 
the mid-infrared spectroscopy (MIR) data to sort biodiesel 
samples into groups based on their types and routes. They 
did this using a PLS-DA-based classification algorithm. 
The PLS-DA classification model yielded identical accuracy 
values of 100%.

Kerosene is relatively understudied compared to gasoline 
and biodiesel. Innovatively, this work categorizes kerosene 
by source conformance using a multivariate method. This 
method handles heterogeneous and uncalibrated kerosene 
samples with optimal spectral profiles, which goes beyond 
quality assurance to target tax avoidance and adulteration at 
local filling stations and reduce refining process and crude 
oil source uncertainty by establishing effective kerosene 
compositional classification algorithms. These categorization 
algorithms ensure kerosene integrity, reliability, and 
regulatory compliance for industrial and home consumers.

Kerosene has been classified in only a few studies in the 
literature. To check for adulteration in kerosene samples, Pontes, 
et al. (2011) used PLS-DA and the successive projections 
method (SPA-LDA) in conjunction with near-infrared NIR data 
with an optical path of 10 mm. When it came to classifying a 
subset of the input data, PLS-DA produced the greatest results, 
with a 100% accuracy rate in the external set.

In regard to taxation and identification of kerosene 
adulteration at local fueling stations, the current study tested 
the multivariate methods (PLS-DA with HCA and PCA) 
for the direct classification of kerosene, which is a novel 
strategy never tried previously for kerosene, based on their 
conformance to the refining source, where different crude 
oil and refinery processes were used, from its optimized 
spectra profile. These classification models are necessary to 
overcome the difficulties of anomalous conditions generated 
from different kerosene samples; those were not previously 
included in calibration sets of existing prediction models.

II. Materials And Methods
A. Kerosene Sampling and Analysis
During a 6-month period, 60 kerosene samples were 

gathered from service stations in the eastern Iraqi city of Kalar 
to consider time-dependent variation in crude oil’s chemical 
structure. The crude oil for these samples comes from Kirkuk 
and Bazian (Classes K and R, respectively), two of the 
largest local refineries with different process specifications. 
Their crude oil comes from different sources. Additional 

10 kerosene samples were tested, obtained from a different 
source, outside the study area, for model verification (external 
validation). Polyethylene containers containing specimens for 
FTIR analysis were maintained at a temperature below 8°C 
in accordance with the usual procedure of the standard test 
method (ASTM D4057 - 19, 2019).

In this study, a spectrophotometer (Model: IRAffinity-1S: 
SHIMADZU) was used. The spectral resolution power was 
4.0 cm-1. For each sample, three absorbance spectra in the 
4000–400 cm-1 wavenumber region were taken and averaged. 
Three spectra were multivariate calibrated to (ASTM E1655-
17, 2018). Testing on the used spectrophotometer is being done 
using a routine quality assessment system developed according 
to standard procedure (ISO 4259-3, 2020). These measurement 
methods were evaluated for repeatability and reproducibility 
(accuracy) in accordance with (ISO 5725-2, 2019).

B. Multivariate Statistical Analysis and Model Development
The obtained FT-Mid IR spectral data was first pretreated 

for curve smoothing and baseline correction by applying the 
Savitzky-Golay first derivative method of a 21-point window 
and a second-order polynomial using OriginLab software 
(free trial version), resulting in 448 variables. The data were 
also preprocessed by changing the values to mean-centered – 
variance set to be 1. The results of each class were arranged 
into a matrix of samples as rows and spectra as columns. 
Kerosene samples were then subjected to statistical analysis 
using agglomerative hierarchal cluster analysis (AHC), which 
uses Euclidean distances and Ward linkage measures, to show 
that the samples were indeed grouped together. PCA analysis 
has been applied to each class to segregate the dataset into 
main groups (Issa, 2024). To further purify component 
scores, a varimax rotation of the PCs with significant 
eigenvalues was conducted. This allowed us to maximize the 
distribution of the components by minimizing the number of 
small coefficients whereas maintaining a high level of detail 
in the original data, as illustrated in Fig. 1a.

Next, samples have been divided into a calibration set after 
removing outliers, and a validation set using the Kennard-
Stone algorithm (Kennard and Stone, 1969). The PLS-DA 
multivariate calibration method was used to establish the 
classification model with a threshold between 0 and 1. To 
verify an appropriate number of latent variables (LV) for 
the PLS-DA classification model, the cross-validated (leave 
one out) predictive relevance (Q2) of the model that each LV 
manages to accomplish has been taken into account. A higher 
Q2 value means a higher predictive ability for the model, as 
reported by Roy and Roy (2008).
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Outliers were detected using high leverage values and Q 
residuals at a 95% level of confidence. Sensitivity (Sens), 
specificity (Spec), precision (Pre), and accuracy (Acc), 
Equations 2–5, evaluations for PLS-DA model quality have 
been employed as reported by Mohammadi, et al. (2020) 
and presented in the following equations (2–5), where TP, 
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FN, TN, and FP represent the statistical parameters of true 
positive, false negative, true negative, and false positive, 
respectively.
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III. Results and Discussion
A. Characteristics of Kerosene Samples
Fig. 1a presents the FT-Mid IR spectra analysis of kerosene 

samples after applying curve smoothing and baseline correction. 
It is apparent from Fig. 1a that kerosene samples are composed 
of several main hydrocarbon compounds. Several typical band 
vibrations within the FT-Mid IR range (4000–600 cm-1) are 
presented. According to the existing vibration types in Fig. 1a, 
different stretching and bending of various functional groups 
for diagnostic and fingerprint regions have occurred within 
the tested range. The stretching vibrations of aliphatic and 
aromatic C-H, C=C, and C-C groups are presented. Bending 
vibration related to C-H also existed in tested samples around 
730 cm-1 and 1035 cm-1. In general, samples contain aliphatic 
compounds, with a considerable proportion of long linear types 
of absorption range around 730 cm-1, and aromatic compounds 
with an absorption range of 1400–1600 cm-1 (Coates, 2000). 
Results of Grubb’s test for outlier detection at a significance 
level of 95% are shown in Fig. 1b.

The AHC method was applied to determine if the 
unidentified outliers in Grubb’s test should be rejected or 
kept in the dataset. According to the AHC method, results 
displayed in Fig. 1c, the questionable outlier samples existing 
in the dataset are clearly identified. These samples have 
demonstrated a high degree of dissimilarity when compared 
to the rest of the samples. These outliers, which are shared 
by both the R and K sample sets, were excluded in the next 
classification calculations. For the remaining dataset, the 
spectra of the samples that were measured within the FT-Mid 
IR range are correctly classified into two main clusters, which 
reflect the origin of the samples at the moment of sampling.

PCA was used to look at and sort samples of kerosene 
into different groups based on how they were refined and 
where they came from. As can be seen from the score plot 
of PCA results in Fig. 2a, Varimax rotation of the principal 
components (PCs) of significant eigenvalues was performed 
to explain more than 99.76% of the total variation in the IR 
spectra, which was represented by two main components, PC1 
and PC2. PC1 (accounts 50.15%) and PC2 (accounts 49.61%) 
recognized two groups in the dataset corresponding to 
different sources and refining processes of kerosene samples.

A PLS-DA model has been established on the basis of two 
groups, R and K that were previously defined by PCA and 
AHC for FT-Mid IR spectral analysis of kerosene samples 
after excluding outliers, given that 36 samples were for the 
calibration set and 15 samples were for the prediction set. Of 
the 36 samples in the calibration set, 21 are of class R and 
15 are of class K.

The 15 samples in the prediction set are comprised of 
8 of R and 7 of K. The number of latent variables, for the 
supervised technique of PLS-DA, the term discriminant factor 
is also used for the spectral dataset was chosen on the basis of 
the maximum predictive ability explained for the dependent 
variable of the kerosene group classifier (Y) and FT-Mid IR 
explanatory variables Xi and using cross-validated Q2.

Fig. 1. (a) Mid-infrared spectrum of 60 kerosene samples in the range 
of 600–4000 cm-1, (b) Results of Grubb’s test for outlier detection at 
a significance level of 95%, and (c) Dendrogram of agglomerative 

hierarchal cluster for the 60 kerosene samples.
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Fig. 2b shows that the cumulative Q2 has been maximized 
when considering three LVs (Q2 equals 65.13%) and that 
after this point, Q2 values give lower predictive relevance 
for the model, despite the fact that a larger number of LVs 
succeeds in explaining a larger total variance of Y and Xi, as 
shown by the cumulative values of the regression coefficient 
(R2). The total variance explained by three LVs for Y was 
75.75% and for Xi was 92.29%.

The loading line for the LVs is depicted in Fig. 2c. 
It can be seen that the spectral transmission bands at 
wavenumbers between 600 and 1700 cm-1, involving C-H 
and C-C bending and CH3 stretch, are the sections that had 
the most impact on LV1. The absorption peaks at 2990–
2400 and 2300–1650 cm-1, which may have been caused 
by CH3 and C=C stretches, had a greater impact on LV2. 
In addition, the primary absorption peaks that characterized 
the LV3 are located between 3550 and 3028 cm-1, 2450 and 
2300 cm-1, and 1700 and 1400 cm-1, respectively, where these 
frequencies correlate to stretches in the CH2 and CH3 bonds, 
as well as aromatic C=C bonds.

The FT-Mid IR spectra shown in Fig. 2c, that the fingerprint 
region is the most significant for LV1. Using the PLS-DA 
model for three latent variables and leaving one out cross-
validation technique, the data set was classified into two main 
groups. In Fig. 3, adequate separation performance for the 
samples is depicted by the 3D score plot of LV1, LV2, and LV3 
(accounting for 59.63%, 28.74%, and 3.92% of the variances 
in the FT-Mid IR spectra, respectively). The figure shows that 
the PLS-DA model can correctly divide the kerosene samples 
into two Groups, K and R, based on how they were refined and 
where they came from, for the calibration and prediction sets.

Table I displays the results of a classification analysis of 
the PLS-DA model. The results demonstrate that 100% of 
the samples in the calibration set were correctly identified, 
whereas 86.67% of the samples in the prediction set were 
correctly classified. To further evaluate the efficacy of 
the PLS-DA model, the Sens, Spec, Pre, and Acc were 
computed for both the calibration and prediction sets, as 
shown in Table I. Sens and Spec are statistical parameters 
for measuring the dependability of any classification model, 
whereas Acc and Pre can be estimated to help with the 
realization of the model’s specifications. The suggested 

Fig. 3. Three-dimensional score plot of the LV1, LV2, and LV3 for 
calibration and prediction sets in partial least squares-discriminant 

analysis model.

Fig. 2. (a) Principle component analysis score plots (PC1 and PC2) 
account 99.76% of the total variation in FT-Mid IR spectra for the 

kerosene dataset after Varimax rotation, (b) Plot of cross-validated Q2, 
R2Y, and R2X and number of LVs in partial least squares-discriminant 

analysis, (c) line loading plot for the three LVs for FT-Mid IR 
explanatory variables.
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TABLE I
The Confusion Matrix And Classification Characterization of 
Kerosene Groups Classification using the PLS-DA Model for 

Calibration and Prediction Sets

Calibration set
From/to K R Total % correct
K 15 0 15 100.00%
R 0 21 21 100.00%
Total 15 21 36 100.00%

Prediction set
From/to K R Total % correct
K 7 0 7 100.00%
R 2 6 8 75.00%
Total 9 6 15 86.67%

Calibration set
Class Sens. Spec. Pre. Acc.
K 1.00 1.00 1.00 1.00
R 1.00 1.00 1.00 1.00

Prediction set
Class Sens. Spec. Pre. Acc.
K 1.00 0.75 0.78 0.78
R 0.75 1.00 1.00 0.87
PLS-DA: Partial least squares discriminant analysis

model’s sensitivity measures the fraction of true positives 
and its specificity measures the fraction of false negatives 
for correctly classified data (Khanmohammadi, et al., 2013). 
Table I also shows that the model’s quality evaluation 
demonstrates its dependability in classifying kerosene 
samples into their respective categories, with a Sens of 
1.00 for class K and a Spec of 1.00 for class R in both the 
calibration and prediction sets. Model performance is slightly 
lower for the prediction set compared to the calibration set 
class for some defining parameters, which may be due to the 
relatively limited number of samples employed.

Fig. 4a and b display an analysis of the discrimination of 
kerosene samples using the PLS-DA model. The goal of this 
analysis is to determine the differences in refining procedures 
and crude oil origin that exist between the classes K and 
R that have been allocated to the FT-Mid IR spectral data 
set. The sample classification procedure appears to have 
been carried out satisfactorily, as evidenced by the accurate 
segregation of the class values for both the calibration and 
prediction sets. Fig. 4 demonstrates quite clearly how the 
two sets of kerosene samples, denoted as K and R, can be 
distinguished from one another.

Fig. 4. (a) Class values estimation plots of calibration and prediction sets using partial least squares-discriminant analysis (PLS-DA) models for class K, 
(b) for class R, (c) ROC curve using PLS-DA models for classification of the kerosene samples for class K; and (d) for class R.
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The receiver operating characteristic (ROC) curve, which 
is utilized for the examination of classification abilities, has 
been applied to illustrate the performance, in terms of Sens 
and Spec, of an existing model as a function of varying the 
discrimination threshold (Hanley, 1998).

The ROC curves for the groups K and R that were 
examined are shown in Fig. 4c and d. It is clear that a 
threshold value of 0.55 or 0.6 for the K class will result in 
a sensitivity and specificity value of 100 percent. The same 
result has also been achieved for the R class, with threshold 
values of 0.45 and 0.4 for the calibration and prediction 
sets, respectively. This indicates that the two groups for K 
and R classes have been entirely separated from one another. 
Because the area under the curve (AUC) is always equal to 
1.00, the p value is always less than 0.05, which indicates 
that the PLS-DA model diagnostic is significant. Since the 
PLS-DA model screening is significant, the null hypothesis 
Ho is rejected in this scenario. According to Ho, the area 
under the curve (AUC) is equal to 0.5, which indicates that 
the separation performance of the model is completely a 
matter of chance (Mallick, et al., 2022).

Before comparing the results of the PLS-DA model 
derived in this work to those of related previous studies, it 
is important to state that the results obtained by the PLS-DA 
model and those raised by PCA and AHC analysis methods 
are highly consistent, confirming the difference between the 
K and R classes of kerosene samples. This finding suggests 
that the differences in hydrocarbon composition between 
these two groups are the result of differences in refining 
processing and crude oil origin.

The external validation for the PLS-DA model was 
made up of validation samples of the classes R and K and 
10 foreign samples (F) collected from a different source 
of kerosene samples, to check the model capability to 

discriminate the F samples as not belonging to any of the 
classes. Fig. 5 shows the observation chart, showing the 
distances of the F samples from the validation set of K and 
R classes. It can easily be seen that classes R and K are 
correctly classified and F samples are outside the boundaries 
of the studied classes K and R.

The PLS-DA model’s verification was independently 
validated by an external source by distinguishing the 10 
foreign samples (F), collected from a different source of 
kerosene, as not belonging to any of the classes was tested. 
Observation chart depicting F samples distances from the K 
and R classes in the validation set within the 5% confidence 

TABLE II
Sens and Spec of PLS-DA Model for Kerosene Screening Compared to Previous Studies.

Investigation approach Ave. Sens1 Ave. Spec* No. of LVs No. of classes (NC) NS 9/NC
PLS-DA, IR (calib. set in this work) 1.00 1.00 3 2 18
PLS-DA, IR (pred. set in this work) 0.88 0.88 7.5
PLS-DA, IR for crude oil (calib. set)2 1.00 1.00 2 3 23.33
PLS-DA, IR for crude oil (pred. set)2 1.00 1.00 10
PLS-DA, GC-MS for gasoline (calib. set)3 0.97 0.99 3 4 16
PLS-DA, GC-MS for gasoline (pred. set)3 0.97 0.93 4
PLS-DA, IR for gasoline (calib. set)3 1.00 0.99 3 4 16
PLS-DA, IR for gasoline (pred. set)3 1.00 1.00 4
QDA, IR for gasoline (calib. set)4 0.90 0.90 3 2 20
QDA, IR for gasoline (pred. set)4 0.85 0.88 22.5
PLS2-DA, IR for biodiesel (calib. set)5 1.00 1.00 3 4 15
PLS2-DA, IR for biodiesel (pred. set)5 1.00 1.00 7
PLS-DA, FE for gasoline (calib. set)6 0.87 0.89 3 3 16.66
PLS-DA, FE for gasoline (pred. set)6 1.00 1.00 8.33
SIMCA, Phys Prop for kerosene (calib. set)7 0.79 0.29 2 2 16
SVM Phys Prop for kerosene (calib. set)7 1.00 1.00 - 2 20
SVM, Phys Prop for kerosene (pred. set)7 1.00 1.00 12.5
SIMCA, IR for kerosene (calib. set)8 1.00 1.00 2 2 20
SIMCA, IR for kerosene (pred. set)8 1.00 1.00 15
1Average of Sens and Spec values for classes were taken into account; 2adopted from (Mohammadi, et al., 2020); 3adopted from (Barra, et al., 2020); 4adopted from (Khanmohammadi, 
et al., 2013); 5adopted from (Mazivila, et al., 2015); 6adopted from (De Paulo, et al., 2014); 7adopted from (Comesaña-García, et al., 2013); 8adopted from (Dago Morales, et al., 2008); 
9NS is a number of samples. PLS-DA: Partial least squares discriminant analysis, SIMCA: Soft independent modeling of class analogy, SVM: Support vector machine

Fig. 5. Three classes observation chart with confidence ellipses for the 
partial least squares-discriminant analysis model external verification 

over the first two LVs (with a significance level of 5%).
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limits, Fig. 5 shows that over the latent variables LV1 and 
LV2. It is clear that classes R and K have been appropriately 
identified and that the F samples lie outside of the boundaries 
of the classes K and R that have been examined.

Table II displays a comparative analysis of the current 
study with different methods in the literature used to classify 
various fuels such as crude oil, gasoline, biodiesel, and 
kerosene. The models were established using techniques 
such as PLS-DA, quadratic discriminant analysis (QDA), 
support vector machine (SVM), and SIMCA, along with 
analytical methods such as infrared spectroscopy (IR), gas 
chromatography-mass spectrometry (GC-MS), and Physical 
properties (Phys Prop). Performance indicators such as 
Average Sensitivity (Ave. Sens) and Average Specificity (Ave. 
Spec) are provided for both calibration and prediction sets to 
demonstrate the models’ capacity to generalize to new data. 
Some methods consistently perform well on both calibration 
and prediction sets, such as PLS-DA with IR for gasoline, 
crude oil, and biodiesel or SIMCA with IR and Phys Prop for 
kerosene. However, other methods show variability or lower 
performance on prediction sets compared to calibration sets. 
The outcomes obtained from this study, the developed PLS-
DA model, for kerosene process detection indicate a potential 
model robustness and generalization. Despite differences, the 
comparison with previous models, the model here for kerosene 
has a promising accuracy in categorizing the samples, offering 
vital insights into their usefulness in fuel classification tasks.

The classification assessment presented in Table II reveals 
that despite the fact that chemometrics and spectral analysis 
have been utilized in numerous attempts to differentiate 
between crude oil and petroleum products, relatively 
little work has been done in this area with regard to the 
categorization of kerosene as it can be drawn from the 
researches in the literature. In the investigations conducted 
by (Comesaña-García, et al., 2013, Dago Morales, et al., 
2008), the distinction between kerosene sample was achieved 
through the utilization of several modeling approaches. These 
approaches included SIMCA coupled with physical parameters 
and SVM coupled with IR spectra, there results were close to 
those obtained here, especially for the calibration data set.

This work utilizes a unique modeling strategy that combines 
PLS-DA with FT-Mid IR spectrum analysis to differentiate 
between two groups of kerosene based on their origins and 
refining processes. Throughout the investigation, it was shown 
that PLS-DA models can effectively do the task, leading 
to the highly satisfactory findings described earlier. The 
classification performance was promising despite the small 
sample size employed for the prediction set. The study used 
a limited number of samples, but the results demonstrate that 
PLS-DA is a valuable, statistically significant, straightforward, 
and cost-effective method for distinguishing kerosene, similar 
to its application for other petroleum products.

IV. Conclusions
•	 Utilizing the supervised pattern detection method PLS-DA 

and multivariate analyses of AHC and PCA on the FT-Mid IR 

dataset can aid in sorting kerosene from different refineries 
and sources efficiently for quality and taxation purposes.

•	 Kerosene samples from various routes can be effectively 
classified using PLS-DA.

•	 AHC has been applied professionally to classify kerosene 
samples and detect outliers.

•	 Outliers identified by Grubb’s test were discarded.
•	 PCA with the varimax rotation method easily distinguished 

the sample distribution into two main classes.
•	 Three LVs from cross-validated PLS-DA models were 

utilized in the calibration set, resulting in successful 
discrimination.

•	 Compared to SIMCA and SVM models, PLS-DA 
demonstrated significant discrimination capability.

•	 The supervised PLS-DA discrimination model significantly 
improved the classification of kerosene samples into clear 
groups, achieving 100% accuracy in the calibration set and 
86.7% accuracy in the prediction set.

•	 The study highlights the effectiveness of using supervised 
PLS-DA for sorting kerosene samples based on their origin 
and processing methods, facilitating quality control and 
fraud detection.

•	 Further research is needed to explore the combination effect 
of PLS-DA with SIMCA on classification accuracy.

•	 Other methodologies such as artificial neural networks and 
classification and regression trees could be promising for 
kerosene categorization and warrant investigation.
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