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Abstract—A wireless sensor network (WSN) consists of several 
sensor nodes; all these nodes can sense physical events, including 
light, heat, and pressure. These networks are essential in smart 
homes, smart agriculture, and smart water management, swelling 
with the concept of the Internet of Things. However, WSN needs 
to address the challenges of energy issues; thus, energy-conserving 
techniques have been pursued for communication. Optimization of 
energy is normally solved using the Particle Swarm Optimization 
(PSO) algorithm since it offers high accuracy but is prone to local 
optima, thus resulting in early convergence. To tackle this challenge, 
this paper proposes the development of an enhanced particle swarm 
optimization for the node power estimation (EPSO-NPE) model. 
EPSO-NPE calculates distinct transmission powers for each node, 
preventing the formation of isolated areas within a sensor cluster. 
Unlike the original PSO, the EPSO algorithm enhances exploration 
capabilities by avoiding stagnation on search space boundaries. 
A comparative analysis with the original PSO-based model (PSO-
NPE), where nodes adopt maximum power for connectivity, reveals 
superior performance by EPSO-NPE. The enhanced model exhibits 
heightened energy-saving capabilities, ultimately extending the 
network’s lifetime.

Index Terms—IoT, Power estimation, PSO, 
Transmission power reduction, WSN.

I. Introduction
Nowadays, the Internet of Things (IoT) is one of the 
extensive areas that allow data collection and sharing, 
and it is rapidly engaging our daily life (Abdalkafor and 

Aliesawi, 2022) (Gardašević et al., 2020). Mainly, the 
advanced technologies involving smart sensors, advanced 
communication technologies, and internet protocols are 
the critical elements of enabling IoT (Mohammed et al., 
2024; Haseeb et al., 2020; Al-Rami and Alheeti, 2022). 
The number of connected devices to the IoT environment 
is growing (Al Zakitat et al., 2023; Abdaljabar, Ucan and 
Alheeti, 2021). It depicts a vast global network of thousands 
of physical machine devices around the world connected 
to the internet, collecting and sharing data and interacting 
with each other (Abdul-Qawy, Almurisi and Tadisetty, 
2020). Thus, it has a significant impact on several sectors 
such as medical, industries, agriculture, home automation, 
and smart cities environments (Tao et al., 2024; Rani et al., 
2020; Nafea et al., 2024). Furthermore, the establishment of 
IoT-based mesh networks and sensor nodes is dramatically 
increased, which is the issue that inherits the problem of 
energy constraints depicted by the transmission power of 
the network’s nodes (Wasmi et al., 2021; Hamdi, Rashid and 
Nafea, 2024). Thus, network clustering and beamforming 
have been used to avoid inefficient transmission power 
(Heinzelman and Younis, 2000; Khediri et al., 2021; Ismael 
et al., 2023). However, the evolution of the IoT leads to 
remain this field an open area for more required correlated 
research.

Consequently, the power supply charge powers the three 
distinct subsystems: the sensor unit, the central processing 
unit, and the communication unit (Abdelaal and Theel, 
2014; Haseeb et al., 2020). On another side, the mitigation 
of wasting power of a particular sensor node can be 
accomplished by several wireless node events such as packet 
overhead, overhearing, collisions, idle listening, and state 
transitions. This research aims to continuously link each of all 
of the nodes that are sensors in one cluster without triggering 
any state changes by the ideal amount of transmission 
power for each node in the network. At this time, we will 
not consider the other instances of energy waste. While 
switching between states would use up some of the battery 
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life of the sensor, it could also be a way to conserve power. 
To save energy, the nodes can enter a sleep state and disable 
most of their functions (Mendes, Rodrigues and Chen, 2010; 
Del-Valle-Soto et al., 2020). The focus of this research is on 
network connectivity, therefore various node statuses will not 
be handled. The next step for stationary sensors is to gain 
network connectivity, subsequently, the goal of the network 
may change to a different mode.

Despite, calculating the least power level for each node 
placed on the network edge to connect its closer neighboring, 
or a group of nodes to reach the edges, in the case of the 
intermediate nodes, would be the ideal solution to detect the 
minimum required power to connect every wireless sensor 
network (WSN) node. As the node number in the cluster 
increased, finding out the closest neighboring nodes while 
maintaining the entire network connection would cause an 
elevation in computational overhead. For that, a sub-ideal 
solution, with a minimal computing-intensive might be 
utilized.

The particle swarm algorithm (PSO) algorithm is the 
most popular swarm-based algorithm used by several studies 
of WSN and energy estimation (Sun et al., 2020). This 
algorithm was proposed by Eberhart and Kennedy (1995) to 
cope with the non-linear functions with optimization issues. 
The PSO algorithm has become a widespread technique 
utilized to solve optimization issues in WSNs because of its 
simplicity and ability to provide high-quality solutions and 
fast convergence (Kulkarni and Venayagamoorthy, 2010; Ling 
et al., 2020). Thereafter, utilizing a PSO for power estimation 
is one of the potential solutions. However, the PSO algorithm 
is easy to dive into local optima, Thus, the model would 
neglect to get the correct results and bring about premature 
convergence. Consequently, this study sheds light on this 
issue and proposes an enhanced particle swarm optimization 
(PSO) for node power estimation named EPSO-NPE. This 
algorithm avoids the local optima problem to some extent 
by avoiding the stuck on the boundaries that occur in the 
original PSO and at the same time, it is supposed to enhance 
the exploration and exploitation procedure of the algorithm. 
The rest of the paper is structured as follows; Section 2 
provides a literature review related to the proposed system 
and related methods and technologies. Therefore, Section 
3 depicts the methodology of this study, while sections 4 
provide the results of the taken experiments. Finally, Sections 
5 and 6 provide discussion and conclusion, respectively.

II. Literature Review
A. WSN Clustering and Energy Consumption
Recently, WSNs have obtained the researcher’s 

attention in many disciplines (Afsar and Tayarani-N, 2014) 
(Mohapatra et al., 2020). WSNs have originated as a new 
robust paradigm that can be utilized in lots of applications 
for generating various types of parameter reports, such 
as pressure, temperature, light, chemical activity, and 
humidity (Tyagi and Kumar, 2013; Khalifeh et al., 2021). 
Therefore, the WSN system can be assessed based on several 

parameters including, (i) the lifetime of a network, in which 
every network node has to be designed to control the local 
energy supply to get the maximum limit of network lifetime. 
(ii) Network Coverage, in which network nodes must be 
effectively distributed in all monitored areas to hit the 
coverage standards. (iii) Scalability in which it is supposed 
that any potential addition of new nodes to the network 
in the future must not cause any change in the network 
performance. (iv) Response time, in which the WSNs should 
respond to alarm-oriented risk situations like fire detection 
timely and quickly, and (v) Security, which is considered as 
one of the crucial measures of the WSNs, especially if the 
WSN is designed for security-oriented purposes (Mahajan 
and Dhiman, 2016; Mohapatra et al., 2020).

Therefore, to enhance the effectiveness of WSNs and 
increase network lifetime, energy efficiency, and scalability, 
as well as decrease routing delay, clustering is applied to 
WSNs (Afsar and Tayarani-N, 2014; Mahajan and Dhiman, 
2016; Mohapatra et al., 2020). Clustering refers to dividing 
the network nodes into sets based on particular mechanisms 
(Afsar and Tayarani-N, 2014) (Mohapatra et al., 2020). In 
clustering, a group of nodes composed the clusters, some 
nodes are chosen to be cluster-heads and other nodes are 
called regular nodes. The cluster head (CH) receives data 
from regular nodes. Then, CH collects data and transmits 
them to the base station (Afsar and Tayarani-N, 2014; Ilyas 
et al., 2020). As clusters in WSN aid in data aggregation, 
this could assist in decreasing the energy consumption and 
transmission overhead (Mohapatra et al., 2020), Fig. 1 shows 
the flow of data in a networked cluster.

On another side, there are some design challenges 
associated with WSN clustering, include (i) Storage, in 
which sensors have storage limitations that can lead to some 
constraints on satisfying the query and storage requirement. 
(ii) Security, in which WSNs may incur too many threats 
and security issues that lead to the need to provide security 
protocols and measures. (iii) Communication, which should 
cover the entire WSNs area to maximize reliability and 
also enhance network coverage. (iv) Limited Energy, which 
is one of the most crucial challenges, where the energy 
forms a constraint to the sensor networks. Thus, decreasing 
the consumption of energy is one of the critical clustering 

Fig. 1. Network Architecture of Clustered WSNs (Gui, Zhou and 
Xiong, 2016).



 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11554 63

issues. (iv) Network Lifetime, in which one of the clustering 
design concerns is represented in the possible limitations of 
a network lifetime, while the sensor node is a low amount of 
energy. (vi) Quality of service (QoS), whereby quality is an 
important issue regarding clustering. Occasionally, clustering 
concentrates on energy efficiency rather than quality which 
can cause some clustering obstacles (Vyas and Chouhan, 
2014; Mohapatra et al., 2020; Khediri et al., 2021).

Consequently, based on the aforementioned challenges, 
energy efficiency represents an important measure of 
WSNs’ effectiveness. Hence, researchers proposed numerous 
protocols and approaches that may help in enhancing the 
energy consumption in clustering WSNs. Sensors can be 
split into several small sets named clusters to support the 
aggregation of data through an efficient network organization 
(Younis, Krunz and Ramasubramanian, 2006; Mohapatra 
et al., 2020). Thus, it would cause reliability enhancement, 
decrease the network communication overhead, and lead 
to considerable savings in energy. On another side, some 
Authors utilized clustering to select a group of network 
nodes. They institute an effective topology for prolonging 
the lifetime improve energy saving of battery-powered WSNs 
(Abd Aziz et al., 2012; Khediri et al., 2021).

B. PSO
PSO is an optimization algorithm inspired biologically by 

birds’ social behavior or fishes’ swarms and their ability to 
exploit or explore a d-dimensional search area for shelter or 
food (Jain and Sharma, 2013; Rao, Jana and Banka, 2017; 
Freitas, Lopes and Morgado-Dias, 2020). In a d-dimensional 
area, the PSO algorithm finds the optimal solution for a 
specific issue by utilizing an iterative operation (Kaur and 
Kumar, 2018; Freitas, Lopes and Morgado-Dias, 2020). 
In PSO, the swarm is formed of a group of individual 
particles. Each particle in the swarm owns a specific fitness 
measured by the fitness function. The particle is (flown) 
over the d-dimensional search area (Rini, Shamsuddin and 
Yuhaniz, 2011; Freitas, Lopes and Morgado-Dias, 2020). The 
particles interact with each other, constituting a particular 
social behavior. The particles are estimated regarding their 
fitness function, and then their speeds and positions are 
updated in every step of the PSO algorithm. Each particle’s 
role and rate are updated based on its experience and the 
neighboring particles. The superior work might be the 
minimum or maximum values. The updates of particles 
depend on the tracking of two extreme values. The first one 
is the best (optimal) solution of the (individual extremum 
pbest) particles. The second is the best (optimal) solution for 
the whole population, called the (global extremum gbest). 
Therefore, several parameters control the searching behavior 
of the PSO algorithm including (i) coefficient of inertia 
weight w, which controls the algorithm’s tendency to expand 
search space and explore new areas within it. (ii) accelerate 
constants c1 and c2, in which it functions as the weight of 
accelerating statistically when each particle is forwarded to 
the position of pbest and gbest, (iii) and r1 and r2, which 
are random numbers between [0,1]. In the original PSO 

algorithm, the updating equations of the particle’s velocity 
and position are as follows:

( ) ( )1
1 1  2 2        g  t t t t t t t t

i i ibest i iv w v c r p x c r best x+ = + − + −  (1)

( 1) ( 1)  t t t
i i ix x v+ += +  (2)

Where t represents the number of iterations, v1 represent 
the speed of the particle and xi is the position of the particle.

In literature, several studies addressed some issues related 
to WSNs designation, such as energy constraint, limited 
capabilities, and bandwidth unavailability, and generally 
routing protocol optimization. Thus, the issue can be modeled 
as an optimization problem, which allows metaheuristic 
algorithms to be used in their solution. From a central point 
of view, several studies produced the PSO algorithm as 
an optimization solution in WSNs. Some of these studies 
examined the optimization algorithms such as the PSO 
algorithm functioning to reduce the energy consumption of 
WSN, enhance the convergence of WSN, and increase its 
lifetime. Next are some related studies that were reviewed.

A study by da Silva Fré et al., (2015) utilized PSO to 
calculate the nodes’ transmission powers in related areas of a 
WSN. This work’s findings indicated that the suggested PSO 
algorithm allowed the saving of sensors’ energy significantly 
by at least, 1 dBm of the overall transmission power of the 
network compared with a simplistic method. Meanwhile, 
Rao, Jana, and Banka proposed an approach consisting of 
a combination of energy-efficient CHs selection and PSO 
(PSO-ECHS). This approach takes various parameters into 
account as the sink distance, intra-cluster distance, and sensor 
nodes’ residual energy. The findings affirmed the suggested 
approach’s superiority compared with the other existing 
approaches regarding the network lifetime and energy 
consumption. As they could run the algorithms by changing 
the sensor node number from 300 to 500, CHs number from 
30 to 50, and calculated overall consumption of energy at the 
end of 5000 rounds.

Kaur and Kumar, (2018) have utilized the PSO-UFC 
protocol to handle the imbalance of inter-cluster and intra-
cluster energy consumption between Master CHs. The 
simulation results manifested that the proposed protocol 
increases the lifetime of the network and enhances energy 
consumption. In the FND criteria, the used protocol 
enhanced the network lifetime by 86%, and in the HDN 
criteria the network lifetime was enhanced by 68%. In 
addition, Latiff, Tsimenidis and Sharif, (2007) proposed 
PSO-C as an energy-aware clustering algorithm for WSN. 
The proposed approach operated to select the best (k-CHs) 
that can reduce the cost through routing. The approach was 
a centralized and distance-based approach that takes into 
consideration the extreme distance between CH and other 
nodes and the residual CH candidates’ energy. Nodes with 
adequate energy are chosen to be CHs, while nodes with an 
energy higher than the average are qualified to be a CCH in 
each round.
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On the other hand, Tam et al., (2018) suggested an 
algorithm based on PSO and fuzzy clustering to minimize 
network energy consumption and decrease network 
disconnects. The proposed model resolved the clustering 
limitations of 3D WSN. Moreover, fuzzy clustering enables 
more easily to determine the optimal structure of clustering 
in 3D WSN. Meanwhile, Wang, (2020) applied PSO for 
optimizing the deployment of WSN nodes. The results 
revealed that PSO could optimize WSN layout optimally 
and effectively, coped with the fixed sensor nodes’ impact on 
optimization, realized rapid convergence speed, and enhanced 
the efficacious WSN coverage.

Furthermore, a study by Jain and Sharma, (2013) sought 
to solve the coverage issues in distributed WSN. Whereby, 
they proposed a modified discrete binary PSO algorithm 
for the WSN nodes’ placement to obtain the maximum 
coverage. The proposed algorithm fixed the coverage 
problem by setting a finite sensor number, optimizing the 
sensor’s deployment, and considering the sensor deployment 
scheme factor. On another side, Sahoo, Amgoth and Pandey, 
(2020) integrated the PSO algorithm with the energy-
efficient clustering and sink mobility (ECSM) technique to 
address the sink mobility and cluster head (CH) selection 
issues. This study covered the node degree, residual energy 
distance, and energy consumption rate (ECR) as CH 
selection factors. The results indicated that the PSO-ECSM 
enhanced the stability period and improved the network’s 
lifetime and throughput.

III. Methodology
A. The System and Network Connectivity
This research only considers scripts that have one cluster 

and N wireless sensors. Using the newly formed mesh 
network, they must transmit measurement packets to a sink 
node. This means that an L-sided square would contain the 
locations of the sinks and sensors. In addition, the subsequent 
calculation of the global neighbors’ matrix γΓ is based on the 
transmitted power vector γ, as expressed in equation (3):

( )
0,    

 
1,   

j th
ij

j th

if P P
r

if P P
γ

<= ≥  (3)

where Pj is the power which it is received at node j, when 
i is transmitting with a power γi, and Pth is representing 
the sensitivity of the receiver. Therefore, a connection is 
established between two nodes when the first node broadcasts 
a strong enough signal to exceed the sensitivity of the 
receiver. According to Fig. 2, the distance from the node is 
depicted by the circles at its center, and the measured power 
is precisely Pth. This indicates that its signal can be received 
by another node within the circle.

Moreover, according to the Friis formula, equation (4), 
There is a direct correlation between the received power and 
both the transmitted power and the physical distance between 
the nodes:

2 2

 
  

 
r tR

t

A AP
P d λ

=  (4)

Where, PR stands for the received power, Pt for the 
transmitted power, d for the transmitting and receiving 
antenna’s effective areas, and λ for the wavelength, which is 
acquired by dividing the light’s speed c by the frequency f 
of the signal. The focus of this work is therefore on a power 
transfer optimization model rather than a particular hardware 
architecture of sensor nodes. Therefore, to represent the 
effective antenna regions, the simplest possible antenna 
model would be chosen. Accordingly, the following are the 
effective areas given by equation (5) when each sensor node 
is equipped with a single isotropic antenna for transmission 
and reception:

2

   
4isotropicA λ
π

=  (5)

And making Ar = At = Aisotropic, the power ratio (i.e., 
equation 4) simplifies to equation (6) as follows:

2

 
4

R

t

P
P d

λ
π

 = 
 

 (6)

Furthermore, after computing the neighbors matrix using 
equation 3, to find out whether the network is linked or not, 
a method is employed. When each of the nodes in a network 
possesses at least one link to each other and can form a 
path that includes all of the nodes, we define it as a fully 
connected network.

Determining the fully connected condition of a particular 
network is harder when the number of nodes is large, 
but easier when a network has a smaller number of 
nodes or/and a smaller AoI. Whereby, in the first case, a 
large number of nodes linked in one network makes its 
management essential. When determining connectedness, 
the initial step is to compute the Laplacian Matrix of the 
neighboring matrix, which is provided by equation (7) 

Fig. 2. Structure model.
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where ni is the ith node and n is the total number of nodes 
(GROSS, 2004).

  ( )  ij n nL l ×=  (7)

( )        
  1      1

0             

i

ij ij

deg n if i j
l if i j and

otherwise

=
= − ≠ Γ =



 (8)

where deg (ni) is the number of connected nodes to the 
node ni, and this value can be determined using equation (9), 
as shown below:

( ) 2deg ( )i ijn r i j= ↔ =  (9)

Therefore, for i=j, the number of connections to ni is the 
same as the square of the neighbor matrix. Determining the 
eigenvalues ψ of the Laplacian matrix L, using equation (10), 
is the second step after calculating the Laplacian matrix. The 
process is as follows:

L.E= ψ.E (10)

where E is an eigenvector, which is a column vector with 
n elements that have to be equal to and match every possible 
Laplacian eigenvalue ψ. The eigenvalues linked to each 
eigenvector are the values of ψ that satisfy equation (10) and 
can be set up inside a vector ψ in the following way:

[ ]1 2 3 , , , ., t
nψ ψ ψ ψ= …Ψ  (11)

with ψ1<ψ2<ψ3<…<ψn
The fully connected requirement can only be met if the 

second smallest Laplacian eigenvalue ψ2, also known in the 
Neighbor Matrix as the algebraic connectivity, is positive. 
Finally, in the neighbor matrix, there must be a positive 
second smallest Laplacian eigenvalue and a minimum of 
one connection per node to determine if a network is fully 
connected. Under these conditions, a fully connected cluster 
can be initiated using the transmission power of individual 
nodes (Wormald, Gross and Yellen, 2004).

B. The EPSO-NPE Model
In this study, the EPSO-NPE model is proposed. In 

the original PSO algorithm, the algorithms start with the 
exploration task and then further for the exploitation task 
depending on the particle’s speed. However, in the velocity 
and position update equation, if a particular particle exceeds 
the velocity or/and its position out of boundaries, the 
algorithm forces the particle to determine boundaries where 
the particle is mostly stuck on there. Thus, this behavior is 
considered as one of the main reasons behind the degradation 
in local optima of the original PSO algorithm. The node 
power estimation based on PSO is as Algorithm 1.

Consequently, to solve this problem and enhance the PSO, 
the particle involved on out of velocity bounds problem 

takes a new value of velocity within the velocity range as 
following equation 1:

( ) (1,1)  v
out up low lowP v v rand v= − × +  (12)

Where vup and vlow are the maximum and minimum limits 
of velocity.

Algorithm 1: PSO‑NPE

Initialize algorithm’s parameters include c1, c2; the value of inertia weight 
ωmin, ωmax, the maximum number of iterations, the population size Pop and 
the, lower bound lb, upper bound ub, and minimum velocity Vmin, maximum 
velocity Vmax.
for i∈{1,2,…., N} do
xi←rand (lb, ub)
vi←rand (Vmin, Vmax)
endfor
for i∈{1,2,…., Pop} do
fitnessi←f (xi, positionscript)

( )  i if pbest fitness individualfitness← 

pbesti←xi
endfor

( ) min) ( )) gbest f pbest globalfitness← for

gbest←pbest
ω←ω*ωdamp
for t∈{1,2,…., tmax} do
for i∈{1,2,…., N} do
according to Equation (1) update the speed of particle i
for j∈{1,2,…., N} do
if (vij>vMax)
(vij←vMax)
endif
if (vij<v Min)
(vij←vMin)
endif
endfor
endfor
for i ∈{1,2,…., N} do
according to Equation (2) update the position of particle i
for j ∈{1,2,…., N} do
if (xij>xMax)
(xij←xMax)
endif
if (xij<xMin)
xij←xMin)
endif
endfor
endfor
for i ∈{1,2,…., N} do
fitnessi←f (xi, positionscript)
if (fitnessi<f (pbesti)) then
f (pbest) i←fitnessi

pbesti←xi

endif
if (f (pbesti)<f (gBest)) then
f (gbest)←f (pbest) i

gbest←pbesti

endif
endfor
endfor
Output optimal solution by gbest.
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Meanwhile, the particle involved in the position out of 
bounds problem is updated to a new position within the 
search space range as in the following equation 2:

( ) (1,1)pos
out up low lowP pos pos rand pso= − × +  (13)

To implement the proposed model, the algorithm’s 
parameters were set as follows; population size set to 30, in 
which each particle presents a solution for its corresponding 
transmission power of a node. Learning coefficients c1 and 
c2 are set at 2, and the value of inertia weight ω and inertia 
weight damping ratio are set to 1 and 0.7, respectively. 
The maximum number of iterations is set to 100, and the 
population size Pop is set to 20. Finally, the lower bound 
lb and upper bound ub are set to −30 and 0, and minimum 
velocity Vmin, and maximum velocity Vmax are set to -4 
and 4, respectively, as illustrated in Table I.

Therefore, the PSO algorithm according to the fitness 
function will decide whether all nodes are associated with 
the estimations of the transmission power of every node. In 
the event of all nodes connection, then the fitness function 
restores the amount of the power of the nodes. Otherwise, it 
restores a limitless value represented by an infinite value. The 
pseudocode of this technique is illustrated in Algorithm 2. 
The next section provides the experimental results. Moreover, 
the node transmitted power estimations that outcomes in the 
smallest amount (i.e., energy saving), is acquired from the 
stored gbest values.

IV. Results and Discussion
This section provides the results of the performed 

experiments. The transmission power optimization was 
performed one by implementing the original PSO-NPE 
method that is illustrated in Algorithm 1, and the other 
one is by implementing the proposed method (i.e., EPSO-
NPE) that is illustrated in Algorithm 2. Moreover, to 
get a robust result, the algorithms were run 10 times for 
each. The algorithms were tested over 15 scripts, each 
script includes the transmitter and receiver positions of 20 
nodes, in which the area of random sensors distribution is 
identified to 20×20 length of meter, and sensor sensitivity 
and transmission frequency are −60 dbm and 915 MHz, 
respectively.

Fig. 3 illustrates the summation of the transmission 
power of nodes for 15 taken scripts by the PSO-NPE and 
EPSO-NPE methods. Generally, the graph shows that the 
estimated power determined by the proposed method is 
less than the one determined by the PSO-NPE over all 15 
scripts. Moreover, it is clear that in script 8 the PSO-NPE 
failure to provide a solution, while the EPSO-NPE succeeded 
to provide a solution with approximate power -4.95dBm. 
This indicates that the proposed algorithm (i.e. EPSO) has 
a higher capability to search the search space and find a 
solution compared with the original PSO. On another side, it 
can be observed that in comparison with PSO-NPE, the use 
of EPSO-NPE has saved, at minimum, approximately 1dBm 

of power, and at maximum approximately 2 dBm of Power 
as it can be seen in script number three.

On another side, Figs. 4 and 5 illustrate the distribution 
of the estimated power values and the medians, for the 
undertaken 15 scripts by PSO-NPE and EPSO-NPE, 
respectively. Regardless of the difference between the boxes 
resulting from the same method. Comparably between the 
two methods, the box plots for PSO-NPE are lower than the 

Algorithm 2: EPSO‑NPE

Initialize algorithm’s parameters include c1, c2; ωmin, ωmax, the maximum 
number of iterations, the population size Pop and the, lower bound lb, upper 
bound ub, and minimum velocity Vmin, maximum velocity Vmax.
for I ∈ {1,2,…., N} do
xi←rand (lb, ub)
vi←rand (Vmin, Vmax)
endfor
for i ∈{1,2,…., Pop} do
fitnessi←f (xi, positionscript)
f (pbest) i←fitnessi⊳individualfitness
pbesti←xi

endfor
for (gbest)←min) f (pbest))⊳globalfitness
gbest←pbest
gbest←pbest
ω←ω*ωdamp
for t ∈{1,2,…., tmax} do
for i ∈{1,2,…., N} do
according to Equation (1) update speed of particle i
for j∈{1,2,…., N} do
if (vij>vMax) or (vij<vMin)
according to Equation (12) update speed of particle i
endif
endfor
endfor
for i ∈{1,2,…., N} do
according to Equation (2) update the position of particle i
for j ∈{1,2,…., N} do
if (xij>xMax) or (xij<xMin)
according to Equation (13) update speed of particle i
endif
endfor
endfor
for i ∈{1,2,…., N} do
fitnessi←f (xi, positionscript)
if (fitnessi<f (pbesti)) then
f (pbest) i←fitnessi

pbesti←xi

endif
if (f (pbesti)<f (gBest)) then
f (gbest)←f (pbest) i

gbest←pbesti

endif
endfor
endfor
Output optimal solution by gbest
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equivalent plots for EPSO-NPE over all scripts. Moreover, 
node power estimations based on the EPSO-NPE are much 
lower than the PSO-NPE within several scripts such as in 
script 3 and script 5. On another side, it can be observed 
that some of the box plots regarding PSO-NPE are short 
compared with the ones by the EPSO-NPE, such as in scripts 
2, 4, and 14. This indicates that there is an obvious difference 
between the two methods’ performances, where the latter 
outperforms the one by the original PSO in which, unlike 
the EPSO, the overall estimated power based on PSO has a 
high level of agreement over all iterations. As a result, this is 
sufficient evidence that proves the better exploration ability 
of the proposed method.

V. Conclusion
This paper proposed a new method named as EPSO-NPE 
to enhance the performance of the node transmission power 
estimation, thus to save the energy of sensor nodes within 
the connected state. Consequently, compared with the method 
based on the original PSO, the use of EPSO-NPE has saved, 
at minimum and maximum 1dBm and 2dBm, respectively, 
of the total transmitting power of the network. Moreover, 
unlike the PSO-NPE, the EPSO-NPE could provide superior 
solutions for all the scripts. As a result, the outperforming 
of the proposed method could be proven by several results, 
and this superior performance I showed overall undertaken 
scripts. Moreover, while the exploration behavior of the 
algorithm is boosted, the proposed EPSO algorithm has 
proven a better searching ability with high exploration and 
exploitation capabilities. For future work, more empirical 
analysis will be established on node placements and its 
power, and with a higher number of scripts. Technically, 
more studies will be established on the PSO algorithm and 
the possibility to enhance its performance from other aspects, 
and extend the comparison range to evolve more methods, 
techniques, and other frequencies such as ZigBee and WiFi.
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