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Abstract—The rapid development of large language models 
(LLMs) has transformed code generation, offering powerful tools 
for automating software development tasks. However, evaluating 
generated code’s quality, security, and effectiveness remains a 
significant challenge. The present systematic survey comprehensively 
analyses studies published between 2021 and 2024, focusing on 
utilizing LLMs in the code generation process. The survey explored 
ten research questions, such as the most commonly used programming 
languages, the metrics employed to evaluate the quality of code, and 
scenarios in which LLMs are applied by developers during the 
software development process, outlining the scope in which prompt 
engineering influences code generation and security concerns with 
the types of benchmarks, models evaluated, and code analysis tools 
used in studies. The findings indicate that the most frequently used 
evaluation metrics in code generation are Pass@k and Bilingual 
Evaluation Understudy. It also shows that Python, Java, and C++ are 
the most widely used languages. Furthermore, identifying security 
vulnerabilities and establishing robust evaluation metrics remain 
challenges. This survey underlines present practices, detects gaps, 
and suggests future research to enhance the reliability and security 
of code generated by LLMs in real-world applications.

Index Terms – Benchmarking, Code Generation, Evaluation 
Metrics, Large Language Models. 

Introduction
The advent of large language models (LLMs) has revolutionized 
the field of code generation, offering unprecedented 
capabilities in automating software development tasks (Brown 
et al., 2020). These models have proven to be remarkable in 
generating code from natural language descriptions, completing 
code snippets, and even repairing errors in code (Chen et al., 
2021). This enables software developers to focus on complex 
tasks in their code (Mendes, Souza and De Souza, 2024). On 
the other hand, evaluating the efficiency, quality, and security 
of the generated code is still challenging (Clark et al., 2024). 

Some of the main problems that researchers and developers 
are dealing with are the absence of standardized evaluation 
metrics and the difficulty in ensuring functional correctness, 
security, and maintainability of the generated code (Paul, Zhu 
and Bayley, 2024a).

This systematic survey aims to review the literature published 
between 2021 and 2024, focusing on using LLMs for code 
generation. With ten specific research questions (RQs), which 
examine the most frequently used programming languages 
in evaluations, the metrics used for evaluating code quality, 
and the scenarios in which developers apply LLMs during 
the software development process. Furthermore, the survey 
explores the impact of different prompts on the code generation 
process, the security of the generated code, the characteristics 
of the benchmarks used for evaluations, the LLMs, which had 
been evaluated, and the code analysis tools used in studies.

This survey uses a methodology that involves a 
comprehensive literature survey, conducted using well-
known literature databases, to identify, select, and analyze 
relevant publications. The findings will contribute to a deeper 
understanding of the capabilities and limitations of LLMs 
in code generation, highlighting areas for improvement and 
suggesting future research directions. Moreover, it aims to 
serve as a valuable resource for researchers and developers 
by providing insights regarding the present use of LLMs for 
code generation and guiding future efforts to improve the 
reliability and security of the generated code.
The survey is motivated by multiple factors, as follows:
a) The growing application of LLMs in generating, completing, 

and optimizing source code necessitates a detailed analysis 
of evaluation methodologies to assess their functional 
correctness, security, and maintainability.

b) A comprehensive survey study can assist researchers and 
developers by consolidating knowledge on evaluation 
approaches, highlighting strengths, limitations, and 
opportunities for improving the field.

c) Despite the rapid progress of LLMs, there is still a noticeable 
gap in survey studies specifically addressing the evaluation 
criteria, benchmarks, and metrics for code generation, making 
this study a significant contribution to advancing the field.

The remaining parts of this survey paper are organized as 
follows: Section II defines the relevant research for this study. 
Section III describes the research methodology employed in 
this study. Section IV defines the findings and outcomes of 
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the study. Section V addresses the risks related to validity. 
The study’s conclusions are presented in Section VI.

II. Related Works
This section briefly reviews the relevant research on this 

topic. Foundational surveys, such as (Fan et al., 2023) and 
(Chowdhury and Haque, 2023), provided an overview of LLM 
applications across domains, including code synthesis. These 
studies highlight the benefits and limitations of using LLMs 
for code generation. In their studies, (Nazir and Wang, 2023) 
and (Kalyan, 2024) further expanded on this by discussing 
the development and capabilities of ChatGPT and the GPT-
3 family, exploring their success across multiple fields, such 
as education, healthcare, and legal reasoning. They also 
addressed ChatGPT’s limitations, such as the generation of 
false information, biases, and other ethical issues. Similarly, 
(Wang and Chen, 2023) explored the use of LLMs in code 
generation and highlighted three main applications: Generating 
code from natural language descriptions, completing code 
snippets, and automatically repairing bugs.

Despite impressive advancements, several studies reveal 
core challenges. A prominent concern is evaluation: How 
to reliably assess the quality, correctness, and efficiency of 
generated code. In their study (Paul, Zhu and Bayley, 2024a) 
specifically emphasized the growing reliance on LLMs in 
automated software engineering tasks, also focusing on the 
limitations of existing evaluation metrics. Similarly, (Lu et 
al., 2024) thoroughly examined the datasets used to evaluate 
LLMs for code generation, classifying datasets that reflect 
diverse programming skills and emphasizing the mismatch 
between present benchmarks and real-world scenarios. 
Similarly, (Chang et al., 2024) detailed the application of 
LLM evaluation techniques, focusing on three dimensions 
of what, where, and how to evaluate them. They have 
collected and summarized tasks in various areas, such as 
natural language problems, reasoning, medical usage, ethics, 
education, and even agent applications. Ethical and security 
concerns also arise. Another study by (Yao et al., 2024) 
provided a comprehensive review of LLMs, categorizing their 
impact into “The Good” (beneficial applications in security), 
“The Bad” (offensive uses), and “The Ugly” (vulnerabilities 
and defenses). They highlighted that LLMs enhance code 
security and data privacy, often outperforming traditional 
methods, but are also exploited for attacks, especially user-
level ones, due to their human-like reasoning.

Recent surveys have aimed to systematize knowledge 
across multiple subdomains. In their study (López Espejel 
et al., 2023) provided a thorough review of state-of-the-art 
methods for generating Java code from natural language text. 
The methods are divided into two major groups: Recurrent 
Neural Network (RNN)-based and transformer-based. The 
Transformer-based methods are divided into encoder-only, 
decoder-only, and encoder-decoder models. The review traces 
the progress made in using deep learning models for Java code 
generation, concentrating on method development, advantages, 
and disadvantages. Similarly, (Wan et al., 2024) covered a more 
detailed review of deep learning in code intelligence, especially 

regarding code completion, code representation learning, code 
search, code summarization, type inference, program synthesis, 
deep learning tasks, etc. It depicts the development of neural 
architectures from RNNs and convolutional neural networks 
to modern Transformers and graph neural networks. In their 
study, (Sharma et al., 2024) through a systematic review, they 
categorized twelve software engineering tasks, including code 
completion, program synthesis, and vulnerability analysis. 
Their findings indicate growing hopes for using machine 
learning techniques for source code analysis, and they pointed 
out factors, such as standard dataset existence, reproducibility, 
and hardware resources as challenges. The authors in (Hou et 
al., 2024) offer a systematic literature review of 395 papers on 
LLMs in software engineering, identifying 85 distinct tasks 
and affirming the dominance of decoder-only models, such as 
GPT-4 in development and repair tasks.

Our systematic survey distinguishes itself from prior studies 
by delivering a comprehensive research analysis that utilizes 
LLMs in the code generation process. While existing studies 
often focus on isolated aspects – such as evaluation metrics (Paul, 
Zhu and Bayley, 2024a; Wang and Chen, 2023), applications 
(Fan et al., 2023), or datasets (Lu et al., 2024); this survey 
systematically addresses 10 interconnected RQs. Unlike surveys 
limited to pre-2023 research (Fan et al., 2023; Chowdhury and 
Haque, 2023), the present survey analysis incorporates recent 
developments by covering studies published between 2021 
and the end of 2024, capturing significant progress after the 
release of models, such as GPT-4 and CodeLlama. In addition, 
it uniquely identifies code analysis tools used (e.g., CodeQL) in 
studies and their limitations, categorizes and analyzes evaluation 
metrics, explores prompt strategies along with their benefits 
and limitations, and investigates the security of generated code. 
Furthermore, 28 benchmarks (e.g., HumanEval, APPS) are 
analyzed. Finally, by highlighting key gaps and proposing future 
research directions, this survey aims to enhance the reliability 
and security of the generated code, serving as a valuable 
resource for researchers and developers.

III. Research Methodology
Inspired by (Petersen, Vakkalanka and Kuzniarz, 2015), the 

methodology used to conduct this survey includes five stages, 
as shown in Fig. 1. First, the initial stage involves identifying 
the study’s objectives and various RQs. Second, the search 
process begins, during which a strategy is defined to identify 
relevant publications related to the survey topic. Third, the 
selection and filtering of the publications obtained in the 
previous stage are carried out. Next, the fourth stage is data 
extraction, where the relevant publications are reviewed and 
the key information required to answer the identified RQs is 
extracted. The final stage includes reporting and documenting 
the results. Details of these five steps, which are presented in 
the following subsections.

A. Identification of Research Objectives and Questions

Research objectives
This survey aims to comprehensively analyze studies 

published between 2021 and 2024, focusing on the LLMs for 
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Fig. 1. Five-stage methodology for conducting the systematic survey.

code generation. The year 2021 was chosen as the starting 
point, as the best of our knowledge, the study (Chen et al., 
2021) was the first to evaluate LLMs for code generation, 
which introduced Codex, a model fine-tuned on GitHub code, 
marking a significant advancement in the application of LLMs 
for code generation. By focusing on this period, the survey 
ensures that no significant studies are overlooked, capturing the 
full scope of recent developments of code generation by LLMs. 
By addressing ten related RQs, this survey identifies, reviews, 
and categorizes state-of-the-art contributions in the field of code 
generation, thereby contributing to the advancement of research 
and development in this rapidly evolving area.
RQs

This survey has identified and addressed several RQs, each 
of which refers to a specific facet of the topic, as outlined 
below:
•	 RQ1: Which programming languages are used in evaluating 

LLMs performance for code generation tasks?
•	 RQ2: Which metrics are most frequently used to evaluate 

the quality of LLM-generated code?
•	 RQ3: For what programming scenarios, duties, and objectives 

are individuals using LLMs?
•	 RQ4: How do different prompts impact the effectiveness of 

LLMs in code generation tasks?
•	 RQ5: Is the code generated by LLMs secure?
•	 RQ6: What are the characteristics of benchmarks used for 

evaluating the performance of LLMs in code generation 
tasks?

•	 RQ7: Which LLMs are used in the evaluation of code 
generation?

•	 RQ8: Which code analysis tools are used to evaluate code 
generated by LLMs?

•	 RQ9: What are the challenges in evaluating LLMs for code 
generation?

•	 RQ10: What are the potential future research directions for 
using LLMs for code generation?

B. Search Strategy

Literature sources
Well-known standard online databases, such as IEEE 

Xplore, Elsevier Science Direct, and ACM Digital Library, 
indexing publications relevant to this survey’s scope, were 
selected as literature sources. Each database was chosen for 
its comprehensive collection of high-quality, peer-reviewed 

research in engineering, computer science, and technology, 
making it ideal for this survey.
Search string

The following search string was used to identify 
publications relevant to this survey within the literature 
sources:
“(Code Generation) AND (LLM OR Large Language Model 
OR Generative AI)”

All search terms were linked using Boolean operators. 
“OR” connected synonyms or related terms, while “AND” 
linked the main terms.

C. Paper Selection

Paper
Inclusion and exclusion criteria were defined to determine 

the relevance of publications. The criteria were applied based 
on the titles, abstracts, and full contents. Fig. 2 illustrates the 
quantity of included and excluded papers at each phase of 
the selection process. After applying the following inclusion/
exclusion criteria, 74 papers were included in this survey.

Inclusion criteria
•	 Publications that utilize LLMs in the code generation 

process. These studies were selected because they focus on 
evaluating the performance and effectiveness of LLMs in 
generating code across various programming tasks.

•	 Publications published online from 2021 to 2024. Our 
literature search indicates that studies evaluating LLMs for 
code generation began to emerge after 2021.

Exclusion criteria
•	 Publications not published in English.
•	 Publications not directly related to the research topic.
•	 Publications that are not peer-reviewed (e.g., gray literature)
•	 Publications not published electronically.
•	 Duplicate publications.
•	 Publications without precise results.

Table I lists all the studies used in this study and the RQ/
Section they support.

D. Data Extraction and Analysis
Data were systematically extracted from the selected 

papers and subjected to extensive analysis. This process 
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TABLE I
Mapping of Included Papers to Their Supported RQ/Section

# Paper RQ/section supported # Paper RQ/section supported
1 (Afsharmazayejani et al., 2024) RQ1, RQ7, RQ9 38 (Liu et al., 2024a) RQ1, RQ2, RQ4, RQ6, RQ7
2 (Aggarwal et al., 2024) RQ1, RQ2, RQ6, RQ7 39 (Liu et al., 2023) RQ1, RQ2, RQ6, RQ7
3 (Al-Khafaji and Majeed, 2024) RQ1, RQ7, RQ8 40 (Liu et al., 2024b) RQ1, RQ7, RQ8, RQ9
4 (Beurer-Kellner, Vechev and Fischer, 2023) RQ2, RQ4, RQ9 41 (López Espejel et al., 2023) Related Work
5 (Black, Rimal and Vaidyan, 2024) RQ1, RQ2, RQ4, RQ7 42 (Lu et al., 2024) Related Work
6 (Bucaioni et al., 2024) RQ1, RQ2, RQ7, RQ8 43 (MacEdo et al., 2024) RQ1, RQ2, RQ4, RQ6, RQ7
7 (Chang et al., 2024) Related work 44 (Majdinasab et al., 2024) RQ1, RQ5, RQ7, RQ8
8 (Chen et al., 2021) Related work 45 (Mendes, Souza and De Souza, 2024) RQ3
9 (Chowdhury and Haque, 2023) Related work 46 (Miah and Zhu, 2024) RQ1, RQ6, RQ7
10 (Clark et al., 2024) RQ1, RQ2, RQ6, RQ7, RQ9 47 (Moradi Dakhel et al., 2023) RQ2, RQ6, RQ7
11 (Corso et al., 2024) RQ1, RQ2, RQ7 48 (Moratis et al., 2024) RQ1, RQ3, RQ6, RQ7, RQ8
12 (Cotroneo et al., 2024) RQ1, RQ2, RQ5, RQ6, RQ7 49 (Nazir and Wang, 2023) Related Work
13 (de-Fitero-Dominguez et al., 2024) RQ1, RQ2, RQ7 50 (Nikolaidis et al., 2024) RQ1, RQ2, RQ4, RQ7
14 (DeLorenzo, Gohil and Rajendran, 2024) RQ7 51 (Niu et al., 2023) RQ2, RQ6, RQ7
15 (Dong et al., 2024) RQ1, RQ6, RQ7 52 (Niu et al., 2024) RQ2, RQ4, RQ6, RQ7
16 (Du et al., 2024) RQ1, RQ2, RQ4, RQ6, RQ7 53 (Ouyang et al., 2024) RQ1, RQ2, RQ4, RQ6, RQ7
17 (Dumitran et al., 2024) RQ1, RQ2, RQ7 54 (Paul, Zhu and Bayley, 2024a) Related Work
18 (Evtikhiev et al., 2023) RQ1, RQ2, RQ7 55 (Paul, Zhu and Bayley, 2024b) RQ1, RQ2, RQ6, RQ7, RQ9, 
19 (Fan et al., 2023) Related work 56 (Petrovic, Konicanin and Suljovic, 2023) RQ1, RQ7
20 (Feng et al., 2023) RQ1, RQ7, RQ8 57 (Rai et al., 2024) RQ1, RQ4, RQ7, RQ9
21 (Geng et al., 2023) RQ1, RQ2 58 (Rizvi et al., 2024) RQ1, RQ7
22 (Gu et al., 2024) RQ1, RQ2, RQ7 59 (Sakib, Khan and Karim, 2023) RQ1, RQ2, RQ7
23 (Guo, 2024) RQ1, RQ2, RQ7, RQ8 60 (Sharma et al., 2024) Related Work
24 (Hajipour et al., 2024) RQ1, RQ5, RQ6, RQ8 61 (Siddiq et al., 2024) RQ1, RQ3, RQ5, RQ8
25 (Hamer, D’Amorim and Williams, 2024) RQ5, RQ7, RQ8 62 (Su et al., 2023) RQ1, RQ2, RQ5, RQ6, RQ7, RQ8
26 (Hou et al., 2024) Related work 63 (Tony et al., 2023) RQ1, RQ5, RQ6, RQ7
27 (Jesse et al., 2023) RQ4, RQ6 64 (Vijayaraghavan et al., 2024) RQ1, RQ6, RQ7
28 (Jiang et al., 2024) RQ1, RQ2, RQ4, RQ7 65 (Wan et al., 2024) Related Work
29 (Jin et al., 2024) RQ3, RQ6, RQ7 66 (Wang and Chen, 2023) Related Work
30 (Kalyan, 2024) Related Work 67 (Wang et al., 2024) RQ3
31 (Kashanaki, Zakharov and Renau, 2024) RQ1, RQ2, RQ6, RQ7 68 (Xiao et al., 2024) RQ6
32 (Khojah et al., 2024) RQ3, RQ4, RQ7 69 (Xu et al., 2023) RQ1, RQ2, RQ7
33 (Khoury et al., 2023) RQ1, RQ5, RQ7 70 (Yan, Gao and Liu, 2023) RQ1, RQ2, RQ6, RQ7, RQ8
34 (Kou et al., 2024) RQ1, RQ2, RQ7 71 (Yang et al., 2024) RQ1, RQ2, RQ7
35 (Koubaa et al., 2023) RQ1, RQ2, RQ6 72 (Yao et al., 2024) Related Work
36 (Li et al., 2024a) RQ1, RQ2, RQ4, RQ6, RQ7 73 (Yu et al., 2024) RQ1, RQ2, RQ4, RQ6, RQ7
37 (Li et al., 2024b) RQ1, RQ7 74 (Zhao et al., 2024) RQ1, RQ6, RQ7, 

Fig. 2. Outcomes of the paper selection process.

ensured that a comprehensive and detailed understanding, 
enabling the study to effectively address the identified RQs 
with clarity and accuracy.

E. Documentation
In the final stage, the findings extracted and analyzed from 

the selected studies are synthesized into a structured paper 
that directly addresses the RQs. This includes organizing 
insights around key focus areas, such as programming 

languages, evaluation metrics, security, benchmarks, and 
potential future direction.

III. Result

The study addressed each identified RQ through a detailed 
analysis of selected publications based on the survey’s 
findings, each RQ is summarized with a short title and 
discussed in its respective subsection.

A. Programming Languages for Evaluation (RQ1)
All selected studies were reviewed to determine which 

programming languages were used to evaluate the LLMs’ 
efficiency in code generation. Most studies focused on three 
main languages, which were 31 papers focusing on Python, 18 
on Java, and 12 on C++. A few of them researched multiple 
programming languages, which indicated the versatility 
of LLMs. However, in the case of hardware programming 
languages, such as Verilog and very high speed integrated 
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circuit hardware description language (VHDL), significantly 
fewer papers existed, with only 4 papers focusing on Verilog 
and 2 on VHDL. Table II shows that the programming 
language with the highest number of publications is Python, 
due to its familiarity, ease of use, and flexibility. Python is 
one of the most widely adopted programming languages, 
offering many libraries and frameworks that cover a broad 
range of applications. GitHub and other public repositories 
also offer plentiful Python code for training and testing 
LLMs. Moreover, well-known datasets, such as HumanEval 
and Mostly Basic Python Problems (MBPP) primarily use 
Python because it is the most dominant coding language. 
Its widespread use in education and research ensures that 
researchers are familiar with the language, reinforcing its 
position as the preferred choice for evaluating LLMs.

B. Metrics for Code Quality (RQ2)
The analysis of the metrics used during evaluations reveals 

that a wide range of studies employed diverse metrics to 
assess the performance and quality of the generated code. 
Many of these studies employed combinations of metrics 
across different categories, reflecting an effort to adopt 
a more holistic evaluation approach. Namely, functional 
correctness metrics, such as pass ratio/pass@k and accuracy 
rate, which assess the correctness of the generated code, 
are among the most commonly used. Similarity metrics, 
such as Bilingual Evaluation Understudy (BLEU) and 
CodeBLEU, which evaluate the similarity of the generated 
codes to developer-written code, are widely used. Similarly, 
measuring cyclomatic complexity alongside counting lines 
of code (LOC) tends to be used to evaluate the logical and 
structural complexity of the generated code. In adition, Time 
and space complexity are also widely used together to assess 
the performance of generated code in terms of execution 
speed and memory usage. Moreover, generation speed and 
average completion time are used as indicators of LLMs’ 
responsiveness to real-world demands and often used as 
usability metrics.

All reviewed studies indicate that none of the models can 
perform best in all types of tasks. Consequently, no single 
useful and successful evaluation metric has been explicitly 
identified. When analyzing which metrics are most robust for 
evaluating LLMs in code generation, it becomes clear that 
no single metric is universally superior; a robust evaluation 
necessitates a multifaceted approach.

Functional correctness metrics, such as pass ratio/pass@k 
are core, directly assessing if generated code passes tests, 
making them highly relevant for utility. However, Pass@k has 
limitations, including its dependence on test suite adequacy, 
which can be inadequate, leading to false judgments. Another 
significant limitation is that users do not usually run the 
LLM several times, so pass@k does not reflect its usability. 
While it demonstrates the randomness of the LLM’s output, 
it does not align with a user’s typical interactive process of 
generating code with an LLM, which might involve multiple 
attempts with input amendments until a satisfactory solution 
is obtained.

TABLE II
Programming Languages used in Evaluations of LLMs

# Programming 
languages

Published papers Total

1 Python (Yan, Gao and Liu, 2023), (Nikolaidis et al., 2024), 
(Clark et al., 2024), (Su et al., 2023), (Xu et al., 
2023), (Majdinasab et al., 2024), (Black., Rimal 
and Vaidyan, 2024), (Zhao et al., 2024), (Hajipour 
et al., 2024), (Yu et al., 2024), (Aggarwal  
et al., 2024), (Rai et al., 2024), (Du et al., 2024), 
(Al-Khafaji and Majeed, 2024), (Dumitran, Badea 
and Muscalu, 2024),  
(MacEdo et al., 2024), (Sakib, Khan and Karim, 
2023), (Khoury et al., 2023), (Feng et al., 2023), 
(Tony et al., 2023), (Liu et al., 2024b), (Siddiq  
et al., 2024), (Geng et al., 2023), (Gu et al., 2024), 
(Ouyang et al., 2024), (Kou et al., 2024), (Dong  
et al., 2024), (Jiang et al., 2024), (Li et al., 2024a), 
(Koubaa et al., 2023), (Evtikhiev et al., 2023)

31

2 Java (Xu et al., 2023), (Yu et al., 2024), (Rai et al., 
2024), (MacEdo et al., 2024), (Corso et al., 2024), 
(Liu et al., 2024a), (Khoury et al., 2023), (Guo, 
2024), (Liu et al., 2024b), (Siddiq et al., 2024), 
(Paul, Zhu and Bayley, 2024b), (Geng et al., 2023), 
(Gu et al., 2024), (Li et al., 2024b), (Yang et al., 
2024), (Jiang et al., 2024), (Koubaa et al., 2023), 
(Bucaioni et al., 2024)

18

3 C++ (Rai et al., 2024), (Rizvi et al., 2024), (Dumitran, 
Badea and Muscalu, 2024), (MacEdo et al., 2024), 
(Khoury et al., 2023), (Liu et al., 2024b), (Yang 
et al., 2024), (Gu et al., 2024), (Li et al., 2024a), 
(de-Fitero-Dominguez et al., 2024), (Koubaa et al., 
2023), (Bucaioni et al., 2024)

12

4 C (Black, Rimal and Vaidyan, 2024), (Hajipour 
et al., 2024), (Rai et al., 2024), (MacEdo et al., 
2024), (Khoury et al., 2023), (Liu et al., 2024b), 
(de-Fitero-Dominguez et al., 2024)

7

5 Verilog (Afsharmazayejani et al., 2024), (Kashanaki, 
Zakharov and Renau, 2024), (Kashanaki, Zakharov 
and Renau, 2024), (Liu et al., 2023)

4

6 JavaScript (Liu et al., 2024b), (Moratis et al., 2024), (Jiang  
et al., 2024)

3

7 VHDL (Afsharmazayejani et al., 2024), (Vijayaraghavan 
et al., 2024)

2

8 R (Miah and Zhu, 2024) 2
9 Arduino (Petrovic, Konicanin and Suljovic, 2023) 1
10 Go (MacEdo et al., 2024), (Gu et al., 2024), (Jiang  

et al., 2024)
3

11 Assembly 
Language 
(32)

(Cotroneo et al., 2024) 1

12 HTML (Khoury et al., 2023) 1

Human-centric metrics, such as #attemptk (this metric 
focuses on the average number of user attempts to obtain a 
satisfactory solution), and direct human evaluation offer 
insights into usability, understandability, and alignment with 
developers’ needs, yet they are time-consuming, expensive, 
and subjective. In addition to the Similarity metrics, such as 
BLEU, are often considered suboptimal for code generation 
that was initially designed for machine translation. BLEU 
primarily measures n-gram overlap between a candidate text 
and a reference text. While this works reasonably well for 
natural language, where semantic similarity often correlates 
with lexical overlap, code has a much stricter syntax and 
semantics. Hence, CodeBLEU metric attempts to address 
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these limitations by incorporating program-specific features 
which extends traditional BLEU by including four sub-
metrics: N-gram match (traditional BLEU), weighted n-gram 
match (assigning different weights to token types), abstract 
syntax tree match (capturing syntactic similarity), and data 
flow match (evaluating semantic equivalence through data 
flow graphs). While described as more accurate and better 
adapted for code generation, CodeBLEU still has recognized 
limitations. It can be overly strict and underestimate a model’s 
performance. It has been found to perform no better than more 
generic metrics from machine translation in correlation with 
human assessment. N-gram-based components of CodeBLEU 
still suffer from a poor correlation with human scores because 
of their inability to capture semantic meaning. Therefore, a 
truly robust evaluation of LLM-generated code requires an 
integration of execution-based functional correctness, human 
judgment for qualitative aspects, domain-specific metrics, and 
continuous adaptation to the evolving nature of LLMs.

A truly robust evaluation of LLM-generated code requires 
a comprehensive and multifaceted strategy that integrates 
execution-based functional correctness, human judgment for 
qualitative aspects, domain-specific metrics (e.g., for security 
or creativity), and the development of dynamic and evolving 
evaluation systems to keep pace with the rapid advancements 
of LLMs and to counter issues, such as data contamination. 
This continuous evolution necessitates an adaptive and 
comprehensive evaluation strategy considering various 
aspects of code quality and real-world applicability.

Further details on the metrics and their categories are 
presented in Table III, and they are briefly discussed below.
•	 Functional correctness: This category evaluates whether the 

generated code produces the correct outputs for given inputs. 
The most common metric in this category is Pass@k, which 
evaluates how many codes out of k attempts were able to 
pass a set of pre-defined test cases. It is popular for directly 
testing execution success, easy to calculate, and aligns with 
popular benchmarks, such as HumanEval.

•	 Syntactic closeness/similarity: This assesses how structurally 
a generated code is similar to a reference code (developer-
written code) in terms of syntax, variable names, code length, 
etc. The dominant metric for measuring code similarity is 
BLEU, which was discussed above.

•	 Code complexity: This quantifies how complex code is to 
read, debug, or maintain. Lines of Code (LOC) is the most 
used metric due to its simplicity, offering a universally 
accessible and easy-to-calculate measure of code complexity. 
However, it does not account for code quality, structure, or 
readability, and more extended code is not necessarily more 
complex or challenging to maintain. In addition, LOC can be 
influenced by formatting styles or language syntax, making 
it a blunt tool for deeper evaluation of code efficiency.

•	 Code performance: This measures the computational 
efficiency (e.g., speed and memory usage) of the generated 
code. Time complexity (e.g., runtime scaling) is mostly 
adopted, as slow code can significantly undermine a 
solution’s practicality. It reflects algorithmic quality and is 

TABLE III
Metrics used in LLM Evaluations and Their Categories

# Categories Metrics Published Papers
1 Functional 

Correctness
Pass@k (Zhao et al., 2024), (Yu et al., 2024), 

(Aggarwal et al., 2024), (Du et al., 
2024), (Niu et al., 2024), (Paul, Zhu 
and Bayley, 2024b), (Miah and Zhu, 
2024), (Liu et al., 2023), (Dong  
et al., 2024), (Jiang et al., 2024), (Li 
et al., 2024a)

Accuracy rate (Yan, Gao and Liu, 2023), (Black, 
Rimal and Vaidyan, 2024), (Niu  
et al., 2023)

Acc@K (Yu et al., 2024)
Pass@TopK (Moradi Dakhel et al., 2023)
Success rate/pass 
ratio

(Sakib, Khan and Karim, 2023), 
(Ouyang et al., 2024), (Jiang et 
al., 2024), (Koubaa et al., 2023), 
(Bucaioni et al., 2024), (Moradi 
Dakhel et al., 2023)

Exact match 
accuracy

(Yang et al., 2024), (Cotroneo et al., 
2024)

Computational 
accuracy

(Yang et al., 2024), (MacEdo et al., 
2024)

Compilation 
accuracy

(Cotroneo et al., 2024)

Compilation rate, 
match success rate, 
code extraction 
success rate

(MacEdo et al., 2024)

2 Syntactic 
Closeness/
Similarity

BLUE (Yu et al., 2024), (Liu et al., 2024a), 
(Niu et al., 2023), (Geng et al., 
2023), (Gu et al., 2024), (Liu et al., 
2023), (Gu et al., 2024), (Cotroneo  
et al., 2024), (Evtikhiev et al., 2023)

CodeBLEU (Al-Khafaji and Majeed, 2024), 
(Corso et al., 2024), (Liu et al., 
2024a), (Gu et al., 2024), (Jiang  
et al., 2024), (Evtikhiev et al., 2023)

text2vec (Yan, Gao and Liu, 2023)
Jaccard similarity (Yu et al., 2024)
SacreBLEU (Cotroneo et al., 2024)
Normalized 
Levenshtein 
similarity

(Corso et al., 2024), (Ouyang et al., 
2024)

OpenAI 
Text-Embedding 
Ada-002 

(Xu et al., 2023)

ROUGE (Geng et al., 2023), (Evtikhiev et al., 
2023)

Perfect predictions 
(PP)

(de-Fitero-Dominguez et al., 2024)

METEOR (Geng et al., 2023), (Evtikhiev et al., 
2023)

RUBY (Evtikhiev et al., 2023)
ChrF (Evtikhiev et al., 2023)
Longest common 
subsequence (LCS)

(Ouyang et al., 2024)

San Martino’s token 
overlapping metrics

(Kou et al., 2024)

Abstract syntax trees 
(AST)

(Moradi Dakhel et al., 2023)

SentenceBERT+ 
cosine similarity 
(SBCS)

(Gu et al., 2024)

(Contd...)
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TABLE III
(Continued)

# Categories Metrics Published Papers
3 Code 

Complexity
Lines of code (Nikolaidis et al., 2024), (Dumitran, 

Badea and Muscalu, 2024), (Corso 
et al., 2024), (Paul, Zhu and Bayley, 
2024b), (Kashanaki, Zakharov and 
Renau, 2024), (Beurer-Kellner, 
Vechev and Fischer, 2023) 

Cyclomatic 
complexity

(Nikolaidis et al., 2024), (Su et 
al., 2023), (Paul, Zhu and Bayley, 
2024b), (Moradi Dakhel et al., 2023)

Token count (Nikolaidis et al., 2024), (Xu et al., 
2023)

Cognitive 
complexity

(Su et al., 2023), (Paul, Zhu and 
Bayley, 2024b)

Line width (Dumitran, Badea and Muscalu, 
2024)

Halstead complexity 
metrics

(Clark et al., 2024)

McCabe cyclomatic 
complexity

(Corso et al., 2024)

Words count (Xu et al., 2023)
4 Code 

Performance
Time complexity (Nikolaidis et al., 2024), (Sakib, 

Khan and Karim, 2023), (Corso  
et al., 2024), (Guo, 2024), (Niu et al., 
2024), (Bucaioni et al., 2024)

Space complexity (Nikolaidis et al., 2024), (Sakib, 
Khan and Karim, 2023), (Guo, 
2024), (Bucaioni et al., 2024)

5 Usability 
and 
Productivity

Generation speed (Black, Rimal and Vaidyan, 2024), 
(Zhao et al., 2024), (Al-Khafaji and 
Majeed, 2024), (Miah and Zhu, 
2024)

Average completion 
time

(Miah and Zhu, 2024)

Response received (Moradi Dakhel et al., 2023)
#AttemptK (Miah and Zhu, 2024), (Guo, 2024)

easier to analyze than memory usage, particularly in dynamic 
environments.

•	 Usability and productivity: This evaluates how well LLMs 
can aid developers in their coding tasks. Generation speed 
(how fast a code is generated) is a key, as faster outputs 
boost productivity in real time. It is tangible and critical for 
adoption, unlike subjective usability metrics.

C. Use Cases and Applications (RQ3)
This RQ aims to identify the use cases of LLMs in code 

generation and to understand how developers apply these 
models in practice, based on an analysis of selected studies. 
In various studies (Siddiq et al., 2024), (Jin et al., 2024), 
and (Moratis et al., 2024), the authors used the DevGPT 
dataset, constructed from real developers’ conversations 
with ChatGPT, to identify developer use cases. Furthermore, 
(Khojah et al., 2024), (Wang et al., 2024), and (Mendes, 
Souza and De Souza, 2024) conducted studies involving 
real developers to pose questions and carried out surveys to 
evaluate the effectiveness of ChatGPT in supporting software 
development tasks and understanding its usage patterns. 
The following are the most common use cases, and they are 
summarized in Table IV:

TABLE IV
Summary of LLM Usage Categories and Actions

# Category Action
1 Code generation and 

refactoring
Write this code
Improve this code
Fix this issue
Solve the following problem
Help me fix it

2 Learning, explanation, and 
educational support

Example usage (API or Objects)
Explain this code
Ask questions to find the correct way

3 Code optimization, 
formatting, and quality 
assurance

Request improvements
Request more description
Add specific instructions
Request verification
Point mistake then request a fix
Test my input

4 Documentation and 
deployment

Add more context
Request examples

5 Specialized tasks and 
miscellaneous use cases

Request another generation
Networking, bioinformatics, or APIs.

•	 Code generation and refactoring: Survey findings indicate that 
developers extensively utilize ChatGPT for generating and 
refactoring code. For example, developers rely on ChatGPT 
to create entire functions or code snippets integrated into their 
projects. LLMs also improve existing code by enhancing 
its efficiency, readability, and performance. For example, 
ChatGPT’s suggestions help developers write more efficient 
code (Jin et al., 2024), and often replace web searches, 
speeding up access to relevant answers (Wang et al., 2024).

•	 Learning, explanation, and educational support: Studies 
reveal that LLMs are valuable educational resources for 
developers aiming to learn new programming libraries, 
frameworks, or application programming interfaces (APIs). 
For example, by using ChatGPT, developers gain insights 
into the usage of functions and frameworks, including 
machine learning libraries (e.g., PyTorch and TensorFlow) 
(Siddiq et al., 2024). ChatGPT explains different portions 
of code in detail, outlining how and why specific techniques 
are used (Moratis et al., 2024).

•	 Code optimization, formatting, and quality assurance: One 
of ChatGPT’s primary strengths is assisting with code 
optimization and formatting. Developers use it to improve 
code structure, ensuring adherence to best practices and 
alignment with coding standards. ChatGPT facilitates the 
reorganization, corrects indentation, and applies consistent 
naming conventions (Siddiq et al., 2024). It also contributes 
to code reviews, offering recommendations to improve code 
quality, performance, and readability.

•	 Documentation and deployment: Studies highlight LLM’s 
role in documentation and deployment support throughout 
the software development lifecycle. Developers use 
ChatGPT to write and modify documentation, such as 
README files and code comments, simplifying the 
communication of complex concepts and facilitating code 
sharing (Jin et al., 2024). Besides,

•	 Specialized tasks and miscellaneous use cases: Survey 
findings indicate that ChatGPT is used for tasks beyond code 
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writing, including networking, data manipulation, and data 
streaming operations. Developers also rely on ChatGPT to 
tackle complex Software Development Kit (SDK) and API 
challenges, such as those involving the Amazon Web Services 
(AWS) SDK (Boto3) and Nylas SDK (Siddiq et al., 2024).

D. Prompt Design and Effectiveness (RQ4)
Many studies have thoroughly examined the impact of 

different prompts on the effectiveness of LLMs in code 
generation tasks. The study by (Black, Rimal and Vaidyan, 
2024) highlights the role of security-focused prompts in 
improving the security of generated code, demonstrating that 
prompts explicitly addressing security flaws significantly 
reduce vulnerabilities. Similarly, (Yu et al., 2024) explore how 
the choice between original and human-labeled docstrings 
affects LLMs’ performance, revealing that models trained on 
single-language corpora perform better when prompted with 
semantically similar instructions. In their study, (Liu et al., 
2024a) evaluate three levels of prompts for guiding ChatGPT, 
showing that carefully constructed prompts can improve 
code generation performance, particularly in Text-to-Code 
(T2C) tasks. Similarly, (Jesse et al., 2023) compare traditional 
prompting techniques with chain-of-thought prompts, 
demonstrating that optimization-focused prompts improve 

runtime efficiency, especially for complex coding problems. 
The authors in (Li et al., 2024a) propose a novel prompting 
technique called structured chain-of-thought prompting, which 
improves the performance of LLMs in code generation tasks.

However, even the most carefully engineered prompts 
can sometimes fail under certain conditions. When the task 
description is under-specified, the model may unpredictably 
fill in missing details and produce code that diverges from 
user intent; overly long or multi-round interactions can 
exceed the model’s token limit, causing earlier instructions 
to be truncated and resulting in incomplete or incorrect 
solutions. The non-deterministic nature of LLMs, where 
“the same prompt produces different answers on different 
inference executions,” poses a significant challenge for 
researchers, as it makes it difficult to determine whether 
the proposed output is the optimal solution, especially for 
complex and chain-of-thought prompts. Simple template- or 
example-based prompts may encourage the model to mimic 
superficial features of the demonstrations without truly 
understanding the underlying logic, causing failures on edge 
cases. Multi-round prompts or repair loops can compound 
errors if the model misinterprets an earlier fix, leading to 
loops of incomplete or contradictory edits. A summary of 
each primary strategy, its benefits, and its common pitfalls 

TABLE V
Prompts, Strategies, Benefits, and Common Limitations

# Prompting category Strategy Typical benefits Common limitations/failure modes
1 Core prompting 

strategies
Zero-Shot prompting 
(Ouyang et al., 2024)

It provides a quick baseline output with no 
examples and is ideal for rapid prototyping and 
broad coverage.

Poor accuracy on complex tasks; highly 
non-deterministic.

Few-Shot prompting 
(Beurer-Kellner, Vechev and 
Fischer, 2023)

Leverages a handful of examples to boost 
relevance, style consistency, and alignment with 
the desired format.

Tends to overfit to the provided examples 
and is highly sensitive to example choice and 
ordering.

Chain-of-Thought (CoT) 
prompting (Jiang et al., 2024)

Breaks down complex tasks into step-by-step 
reasoning, improving correctness on multi-step 
logic.

Can produce lengthy, context-heavy rationales 
that waste the model’s token.

Structured CoT (SCoT) 
prompting (Li et al., 2024a)

Embeds explicit programming structures (loops, 
branches) into the reasoning, yielding clearer, 
accurate code.

Requires significant effort to design effective 
structures; a large prompt size can trigger 
truncation and loss of instructions.

Template-based prompting 
(Liu et al., 2024a)

Uses fixed prompt skeletons for consistent, 
repeatable results on standard tasks.

Breaks down if input deviates slightly from 
the template, making it brittle and inflexible to 
evolving requirements.

2 Contextual and 
framing strategies

Context-rich prompting 
(Khojah et al., 2024)

Incorporates domain-specific details (APIs, 
docstrings, constraints) to enhance accuracy and 
relevance

Large prompts risk exceeding token limits; 
outdated context can mislead the model’s 
output.

Role-based prompting (Black, 
Rimal and Vaidyan, 2024)

Frames the model’s persona (e.g., “As a senior 
engineer…”) to influence tone, style, and 
domain focus

Limited impact on code correctness; mostly 
stylistic.

Iterative/multi-round 
prompting (Nikolaidis et al., 
2024)

Enables continuous refinement by feeding back 
errors, test outputs, or user corrections

Errors can compound across rounds, leading to 
endless correction loops.

3 Control and 
constraint-based 
strategies

Conciseness requests 
prompting (Liu et al., 2024a)

Produces lean, focused code snippets that are 
easier to review and deterministic in behavior

Reduce readability or clarity.

Security-focused prompting 
(Black, Rimal and Vaidyan, 
2024)

Embeds security checks and mitigations directly 
into the prompt, reducing vulnerability risks

It can produce overly defensive or verbose code 
at the expense of performance.

Efficiency prompts (Niu  
et al., 2024)

Directs the model to optimize for 
performance (speed, memory), yielding more 
resource-efficient code

Sometimes conflicts with readability or 
maintainability.

Format control prompting 
(MacEdo et al., 2024)

Enforces a consistent output format (e.g., fenced 
code blocks), simplifying automated parsing and 
evaluation

Adds prompt overhead; may limit creative 
solutions
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is shown in Table V. The papers reviewed suggest that the 
success of LLMs in code generation tasks is highly dependent 
on prompt design. Well-constructed prompts, tailored to task 
complexity and model capabilities, can significantly improve 
accuracy, security, and optimization. It follows that the 
effectiveness of prompt engineering critically determines the 
performance of leveraging the capabilities of LLMs.

E. Security of LLM-Generated Code (RQ5)
Several studies (Su et al., 2023), (Majdinasab et al., 

2024), (Hajipour et al., 2024), (Khoury et al., 2023), (Hamer, 
D’Amorim and Williams, 2024), (Tony et al., 2023), (Siddiq 
et al., 2024), and (Cotroneo et al., 2024) have investigated 
the security of generated codes, identifying various 
vulnerabilities, such as hard-coded credentials, improper 
resource management, and insecure coding patterns.

Several studies examine the security capabilities of specific 
LLMs. (Su et al., 2023) Evaluated codes generated by ChatGPT, 
Claude, Spark, and Bing AI. Their findings suggest that these 
newer models perform better than earlier generations regarding 
reliability and security. Similarly, the security of GitHub 
Copilot was evaluated by (Majdinasab et al., 2024), who used 
CodeQL and manual inspection to detect vulnerabilities in its 
suggestions. Their results show that despite post-processing 
efforts, Copilot continues to generate vulnerable code for 
specific categories of weaknesses. In their study (Hajipour et 
al., 2024) explored vulnerabilities in code generated by various 
LLMs, including ChatGPT, CodeGen, and Copilot, concluding 
that all models could produce code with exploitable flaws.

Other researchers focus on how ChatGPT performs 
in real-world development environments. (Siddiq et al., 
2024) Analyzed developers’ interactions with ChatGPT and 
evaluated the generated codes; they found several quality 
issues, such as undefined variables, insecure comments, and 
code that required significant revision before being used. 
Their study also explored the integration of this code into 
repositories, concluding that ChatGPT’s output is typically 
of low quality and not merged directly due to required 
modifications. Similarly, (Hamer D’Amorim and Williams, 
2024) compared ChatGPT-generated codes with Stack 
Overflow codes, concluding that while both sources pose 
security risks, ChatGPT demonstrates greater restraint in 
producing insecure patterns.

In summary, studies consistently show that LLMs are 
prone to generating insecure code, particularly when used 
without supervision. While newer models, such as ChatGPT 
may be less risky than community-driven platforms, such as 
Stack Overflow, they still cannot be trusted to produce secure 
code autonomously. Security tools, such as static analyzers, 
manual review, and robust testing remain critical. Developers 
must treat LLM-generated code as potentially insecure by 
default and adopt cautious practices when integrating such 
code into production systems.

F. Benchmark/Dataset Characteristics (RQ6)
Benchmarks for evaluating LLMs in code generation 

are designed to assess their ability to effectively generate, 

understand, and execute code. These benchmarks typically 
have datasets containing multiple types of code snippets, 
functions, classes, complete programs, or even algorithms. 
They also provide prompts ready to be input into LLMs, 
often in the form of natural language or partial code, to 
guide the code generation process. Test cases are included 
to verify if the generated code is correct in terms of both 
syntax and semantics. In addition, reference solutions are 
often included as ground truth to support accurate validation 
and comparison. Most datasets are constructed from public 
repositories, coding websites, or textbooks, with links 
provided for reproducibility and transparency. Following 
a thorough review of the relevant studies, several common 
factors were identified across the examined benchmarks: the 
dataset name, type of programming language, availability 
of test cases, reference solutions, data sources, and overall 
dataset accessibility. These findings are summarized in 
Table VI. Among the benchmarks reviewed, HumanEval 
is one of the most widely used in existing studies, as it 
provides a standardized benchmark with well-defined Python 
programming problems and corresponding test cases. In 
addition, its structured design allows consistent comparisons 
across models, fostering reproducibility and comparability in 
research. However, newer studies avoid using HumanEval 
to evaluate recent models, as it may have been included in 
the training data of LLMs, leading to potential biases in the 
results.

G. Models used in Evaluations (RQ7)
After analyzing all the relevant studies, it becomes clear 

which LLMs were used in each study. Models, such as 
ChatGPT (versions 3–5) and other specialized variants 
appear frequently in studies, with some research evaluating 
more than one LLM. Table VII highlights the LLMs used 
in code generation research. When selecting models for 
evaluation, researchers balance two axes of choice: Licensing 
(open-source vs. proprietary) and architecture (decoder-only 
vs. encoder-decoder). Proprietary models, such as OpenAI’s 
GPT-3.5, GPT-4, Anthropic’s Claude, and Google’s Gemini, 
dominate many applied studies due to their high performance 
and convenient API access. GPT-4, for example, regularly 
tops benchmarks for functional correctness and security and 
generates code with extensive comments (Dumitran, Badea 
and Muscalu, 2024). However, the lack of transparency around 
their training data and internal weights makes it challenging 
to analyze failure modes or attention behaviors. By contrast, 
open-source models, such as CodeLlama, StarCoder, 
PolyCoder, Mistral, and CodeGen are fully inspectable and 
fine-tunable. Recent results show that CodeLlama-Python-7B 
can outperform much larger closed-weight models on 
benchmarks, such as HumanEval (Niu et al., 2024), and Mistral 
variants excel at automated vulnerability repair (de-Fitero-
Dominguez et al., 2024). Yet smaller open-source models 
struggle to generate correct solutions from start to finish and 
are often constrained by their maximum context size.

Most studies focus on decoder-only transformers, which 
are designed to predict the next token based on a given 
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TABLE VI
Key Attributes of Benchmarks for Evaluating Code Generation in LLMs

# Name Code type Programming 
language

Source of data Test cases Reference 
solutions

Dataset link

1 LLMSecEval (Tony  
et al., 2023)

NL prompt, code 
snippets

Python and C MITRE's Top 25 
Common Weakness 
Enumeration, Authors

- Yes https://github.com/tuhh-softsec/
LLMSecEval/

2 DevGPT (Clark et al., 2024), 
(Jin et al., 2024), (Moratis  
et al., 2024)(Xiao et al., 2024)

Functions, classes, 
algorithms, and 
full programs

Multiple 
languages

Chats between 
developers and 
ChatGPT

- - https://github.com/NAIST-SE/
DevGPT

3 OJI Dataset (Liu et al., 2023) Full programs, 
functions, and 
algorithms.

C++, Python 
Code

Romanian Informatics 
Olympiad (2002–2023)

Yes Yes -

4 HumanEval (Zhao et al., 
2024), (Aggarwal et al., 2024), 
(Niu  
et al., 2024) (Ouyang et al., 
2024), (Dong et al., 2024), (Li 
et al., 2024a)

Functions Python Authors Yes Yes https://github.com/openai/
human-eval

5 Human-Eval – ET (Zhao  
et al., 2024)

Functions Python Human-Eval with 
additional test cases

Yes Yes

6 MBPP (Zhao et al., 2024), 
(Niu  
et al., 2024), (Dong et al., 
2024), (Li et al., 2024a) 

Functions, classes, 
programs

Python Coding platforms 
and competitive 
programming problems.

Yes Yes http://github.com/
google-research/google-research/
tree/master/mbpp/

7 MBPP-ET (Zhao et al., 2024), 
(Dong et al., 2024)

Functions, classes, 
programs

Python MBPP with additional 
test cases

Yes Yes -

8 APPS (Yan, Gao and Liu, 
2023), (Ouyang et al., 2024), 
(Dong  
et al., 2024)

Functions, 
algorithms, and 
complete programs

Python Programming platforms 
and online coding 
competitions

Yes Yes https://github.com/hendrycks/
apps

9 LLMC Dataset (Su et al., 
2023)

Functions, classes, 
programs

Python LeetCode, Authors Yes Yes -

10 MBPP+ (Aggarwal  
et al., 2024)

Functions, classes, 
programs

Python Extended version of 
MBPP

Yes Yes https://github.com/evalplus/
mbppplus_release

11 Bash dataset (Aggarwal  
et al., 2024)

Bash scripts Bash scripts Authors Yes Yes -

12 CodeLMSec (Hajipour et al., 
2024)

functions, classes, 
and algorithms

Python and C Generated using GPT-4 
and Code Llama-34B

- - https://github.com/codelmsec/
codelmsec

13 CoderEval (Yu et al., 2024), 
(Dong et al., 2024)

functions and 
non-standalone 
functions

Python and Java Open-source projects Yes Yes https://github.com/CoderEval/
CoderEval

14 ClassEval (Du et al., 2024) Classes with 
multiple methods

Python Authors Yes Yes https://github.com/FudanSELab/
ClassEval

15 CodeXGLUE (Niu et al., 
2023)

functions, classes, 
and programs

Java, C#, 
Python, Ruby, 
Go, C/C++, 
JavaScript, PHP

open-source repositories 
and coding platforms

Yes Yes https://github.com/microsoft/
CodeXGLUE

16 R Dataset (Miah and  
Zhu, 2024)

Functions and 
Algorithms 

R R programming 
textbooks

Yes Yes -

17 CodeNet (MacEdo  
et al., 2024)

functions, 
algorithms, and 
programs

C, C++, Go, 
Java, and Python

Open-source projects 
and coding platforms

Yes Yes http://github.com/IBM/Project_
CodeNet/

18 T2C Dataset (Liu  
et al., 2024a)

functions Java Part of the CodeXGlue 
benchmark

- Yes https://github.com/BaoBaoGitHub/
guiding-chatgpt-for-code-generation

19 C2C Dataset (Liu  
et al., 2024a)

functions C# and Java Part of the CodeXGlue 
benchmark

- Yes https://github.com/BaoBaoGitHub/
guiding-chatgpt-for-code-generation

20 ManySStuBs4J (Jesse  
et al., 2023)

Single-statements Java Open-source projects - Yes -

21 LeetCodeEval (Niu  
et al., 2024)

functions C++ LeetCode Problems Yes Yes https://github.com/NougatCA/
EfficiencyEval

22 ScenEval (Paul, Zhu and 
Bayley, 2024b)

functions, 
algorithms, and 
programs

Java textbooks, W3Resource, 
and Stack Overflow

Yes Yes -

23 HDLEval (Kashanaki, 
Zakharov and Renau, 2024)

code relevant to 
hardware design

Verilog, Chisel, 
pyRTL, and 
DSLX.

HDLBits - Yes -

(Contd...)
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TABLE VI
(Continued)

# Name Code type Programming 
language

Source of data Test cases Reference 
solutions

Dataset link

24 VHDL-Eval (Vijayaraghavan 
et al., 2024)

digital logic design 
and hardware 
description tasks

VHDL Verilog-Eval and VHDL 
tutorials

Yes Yes -

25 VerilogEval (Liu et al., 2023) hardware design 
tasks

Verilog HDLBits Yes Yes https://github.com/NVlabs/ 
verilog-eval

26 CopilotEvaluation (Moradi 
Dakhel et al., 2023)

Sorting algorithms, 
Data structures

Python Programming courses 
and books

Yes Yes http://github.com/
Copilot-Eval-Replication-Package/
CopilotEvaluation/

27 Shellcode_IA32 dataset 
(Cotroneo et al., 2024)

Assembly code 
snippets

Assembly 
Language 
(IA-32)

Publicly Available 
Security Exploits:

- Yes https://github.com/dessertlab/ 
Shellcode_IA32

28 IEEEXtreme (Koubaa et al., 
2023)

functions, 
algorithms, and 
programs

Python 3, Java 7, 
and C++

IEEEXtreme 
Competition

Yes Yes http://www.kaggle.com/datasets/ 
riotulab/chatgpt-evaluation-on 
-ieeextreme-competitions/

VHDL: Very high speed integrated circuit hardware description language

(Contd...)

Table VII
LLMs Used in Code Generation Evaluation Studies

Model Published papers Total
ChatGPT – 3.5 (Yan, Gao and Liu, 2023), (Clark et al., 2024), (Black, Rimal and Vaidyan, 2024), (Aggarwal et al., 2024), 

(Rai et al., 2024), (Du et al., 2024), (Al-Khafaji and Majeed, 2024), (Corso et al., 2024), (Guo, 2024), 
(Paul, Zhu and Bayley, 2024b), (DeLorenzo, Gohil and Rajendran, 2024), (Kashanaki, Zakharov and 
Renau, 2024), (Li et al., 2024b), (Khojah et al., 2024), (Cotroneo et al., 2024)

14

ChatGPT 4 (Petrovic, Konicanin and Suljovic, 2023), (Zhao et al., 2024), (Du et al., 2024), (Al-Khafaji and Majeed, 
2024), (Dumitran, Badea and Muscalu, 2024), (Sakib, Khan and Karim, 2023), (Niu et al., 2024), 
(DeLorenzo, Gohil and Rajendran, 2024), (Kashanaki, Zakharov and Renau, 2024), (Kashanaki, Zakharov 
and Renau, 2024), (Miah and Zhu, 2024), (Gu et al., 2024), (Li et al., 2024b), (Liu et al., 2023), (Ouyang et 
al., 2024), (Kou et al., 2024), (Dong et al., 2024), (Bucaioni et al., 2024)

15

ChatGPT (Version not mentioned) (Nikolaidis et al., 2024), (Su et al., 2023), (Jin et al., 2024), (Miah and Zhu, 2024), (Feng et al., 2023), 
(Paul, Zhu and Bayley, 2024b), (Moratis et al., 2024), (Gu et al., 2024)

9

ChatGPT – 3.5 Turbo (Xu et al., 2023), (Yu et al., 2024), (Liu et al., 2024a), (Khoury et al., 2023), (Hamer, D’Amorim and 
Williams, 2024), (Liu et al., 2024b), (Niu et al., 2024), (Kashanaki, Zakharov and Renau, 2024), (Liu et al., 
2023), (Ouyang et al., 2024), (Yang et al., 2024), (Gu et al., 2024), (Dong et al., 2024), (Li et al., 2024a)

12

CodeLlama-Python-7B (Zhao et al., 2024), (Dumitran, Badea and Muscalu, 2024), (Dumitran, Badea and Muscalu, 2024), 
(MacEdo et al., 2024), (Niu et al., 2024), (Vijayaraghavan et al., 2024), (DeLorenzo, Gohil and Rajendran, 
2024), (Yang et al., 2024), (Gu et al., 2024), (Dong et al., 2024)

10

Codellama 34B (Aggarwal et al., 2024), (Dumitran, Badea and Muscalu, 2024), (MacEdo et al., 2024), (Niu et al., 2024), 
(Vijayaraghavan et al., 2024), (Dong et al., 2024)

6

Codellama-instruct-13b (Rizvi et al., 2024), (MacEdo et al., 2024), (Niu et al., 2024), (DeLorenzo, Gohil and Rajendran, 2024), 
(Yang et al., 2024)

4

Starcoder (Aggarwal et al., 2024), (Du et al., 2024), (Dumitran, Badea and Muscalu, 2024) 3
WizardCoder 15B (Du et al., 2024), (MacEdo et al., 2024), (Niu et al., 2024) 3
Instruct-CodeGen 16B (Du et al., 2024), (Hamer, D’Amorim and Williams, 2024), (Kashanaki, Zakharov and Renau, 2024), 

(Dong et al., 2024), (Jiang et al., 2024)
5

CodeGen (350M) (Yu et al., 2024), (Hamer, D’Amorim and Williams, 2024), (Kashanaki, Zakharov and Renau, 2024) 3
Gemini 1.0 (Black, Rimal and Vaidyan, 2024), (Al-Khafaji and Majeed, 2024), (Dumitran, Badea and Muscalu, 2024) 3
mistral-7b-instruct-2 (Rizvi et al., 2024), (Dumitran, Badea and Muscalu, 2024) 2
mixtral-8×7b-instruct (Rizvi et al., 2024), (MacEdo et al., 2024) 2
InCoder-6B (Zhao et al., 2024), (Du et al., 2024), (Dong et al., 2024), (Jiang et al., 2024) 4
InCoder-1.3B (Kou et al., 2024)
CodeParrot-1.5B (Kou et al., 2024)
CodeGeeX2-6B (Zhao et al., 2024), (Hamer, D’Amorim and Williams, 2024) 2
CodeGen2.5-7B (Zhao et al., 2024), (Vijayaraghavan et al., 2024), (Kou et al., 2024) 2
GitHub Copilot (Majdinasab et al., 2024), (Corso et al., 2024), (Moradi Dakhel et al., 2023) 2
PolyCoder 2.7B (Du et al., 2024), (Hamer, D’Amorim and Williams, 2024), (Kou et al., 2024), (Gu et al., 2024) 4
Codex (Hamer, D’Amorim and Williams, 2024), (Tony et al., 2023), (Dong et al., 2024), (Evtikhiev et al., 2023) 2
ChatGPT – 3.4 (Clark et al., 2024), (Black, Rimal and Vaidyan, 2024) 2
DeepSeek-6.7B (Zhao et al., 2024), (Dumitran, Badea and Muscalu, 2024), (Li et al., 2024a) 3
MagiCoder-6.7B (Zhao et al., 2024), (MacEdo et al., 2024) 2
Microsoft's Bing AI (Su et al., 2023) 1
iFLYTEC’s Spark (Su et al., 2023) 1
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TABLE VII
(Continued)

Model Published papers Total
Anthropic’s Claude (Su et al., 2023) 1
CodeT5+-Python-770M (Zhao et al., 2024), (Niu et al., 2023), (Gu et al., 2024), (Cotroneo et al., 2024) 4
DeepSeek Coder (33B Base, 33B Instruct) (Niu et al., 2024) 1
ChatDev (Zhao et al., 2024) 1
PanGu-Coder (300M) (Yu et al., 2024) 1
Codellama (Afsharmazayejani et al., 2024), (de-Fitero-Dominguez et al., 2024) 2
Mistral 7B (Aggarwal et al., 2024), (de-Fitero-Dominguez et al., 2024) 1
RoMistral 7B (Dumitran, Badea and Muscalu, 2024) 2
ChatGLM 6B (Du et al., 2024) 1
Vicuna 7B (Du et al., 2024) 1
CodeGeeX 13B (Du et al., 2024), (Dong et al., 2024), (Jiang et al., 2024) 3
Instruct-StarCoder 15B (Du et al., 2024), (Li et al., 2024b), (Gu et al., 2024), (Dong et al., 2024) 4
Copilot (Nikolaidis et al., 2024) 1
Codestral 22B (Dumitran, Badea and Muscalu, 2024) 1
AutoCoder 6.7B (Dumitran, Badea and Muscalu, 2024) 1
CodeQwen 1.5 7B (Dumitran, Badea and Muscalu, 2024) 1
Yi 9B (Dumitran, Badea and Muscalu, 2024) 1
Phi3 14B (Dumitran, Badea and Muscalu, 2024) 1
Tabnine (Corso et al., 2024) 1
Google Bard (Corso et al., 2024) 1
Phi-2 (Niu et al., 2024) 1
CodeGen2.5-QLoRa (Vijayaraghavan et al., 2024) 1
Granite-20B-Code-Instruct (Vijayaraghavan et al., 2024) 1
Granite-20B-Code-Instruct-ICL (Vijayaraghavan et al., 2024) 1
VeriGen (6B, 16B) (DeLorenzo, Gohil and Rajendran, 2024) 1
TransCoder (Yang et al., 2024) 1
AlphaCode (1.1B) (Dong et al., 2024)(Jiang et al., 2024) 2
CodeBERT (Cotroneo et al., 2024) 1

input context. They generate code autoregressively, token by 
token, based on the preceding context and generated tokens 
(Liu et al., 2024b). The GPTseries (GPT3/3.5/4), Codex, 
and open-source models, such as CodeLlama, StarCoder, 
and DeepSeek Coder fall into this category. These models 
excel at generative tasks where the output flows sequentially 
from a given prompt (like code completion or initial code 
generation from a natural language description). In contrast, 
encoder-decoder models (e.g., BART-derived CodeT5, 
PLBART, AlphaCode) comprise two main parts: An encoder 
and a decoder. The encoder processes the input (e.g., natural 
language description), converting it into a fixed-length 
representation (vector), and the decoder then generates the 
output (e.g., code) based on this representation (Liu et al., 
2024a). This bidirectional encoding step can improve tasks 
that need a holistic understanding of the input, such as code 
summarization or translation between languages, but are less 
commonly used for pure “generate from scratch” scenarios.

H. Code Analysis Tools used in Evaluations (RQ8)
The analysis identifies the code analysis tools utilized in 

studies. Since manually verifying generated code is time-
consuming and expensive, automated tools, such as PyLint, 
Flake8, and SonarQube are employed for static code analysis, 
focusing on style, security, and maintainability. In addition, 
dynamic evaluation tools, such as LeetCode Online Judgment 
are used to evaluate the functionality and performance of 
generated code using pre-defined test cases. CodeQL is 

primarily used in many studies for its robust static analysis 
capabilities for identifying vulnerabilities across different 
programming languages, and its compatibility with various 
analysis scenarios makes it a reliable tool for ensuring code 
quality and security. Table VIII summarizes these tools and 
their usage in evaluating generated code.

However, these tools have limitations. PyLint, although it’s 
precision is generally high, generates false positives and often 
ignores messages related to stylistic issues (e.g., whitespaces, 
newlines, and invalid names) and import-related messages 
(e.g., unused imports and missing imports) (Siddiq et al., 
2024). Flake8 prioritizes quantifiable style violations (e.g., 
whitespace, syntax) over qualitative aspects, such as code 
readability (Yan, Gao and Liu, 2023). Although SonarQube 
supports multiple languages and continuous integration, its 
cognitive complexity metrics are restricted to Java, Python, 
and JavaScript, and it lacks suitable queries for vulnerability 
detection related to algorithm problems in Python and 
JavaScript (Liu et al., 2024b). CodeQL, while powerful 
for identifying security vulnerabilities and checking code 
quality, vulnerability capabilities that are limited to specific 
types, such as pointer and memory-related vulnerabilities in 
algorithm problems for languages, such as C, C++, and Java, 
and it may not have suitable queries for other languages, 
such as Python (Liu et al., 2024b). The LeetCode Online 
Judgment platform assesses runtime and memory utilization. 
Still, it terminates execution upon the first test failure, 
meaning the test case pass rates provided may serve as a 
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Table VIII
Studies Code Analysis Tools Used for Evaluating  

LLM-Generated Code

# Tool name Purpose Official link
1 CodeQL (Majdinasab  

et al., 2024), (Hajipour et al., 
2024), (Hamer, D’Amorim 
and Williams, 2024), (Liu 
et al., 2024b), (Siddiq et al., 
2024)

Code vulnerability 
analysis

https://codeql.
github.com/

2 Flake8 (Al-Khafaji and 
Majeed, 2024), (Feng et al., 
2023)

Style guide 
enforcement for 
Python

https://flake8.
pycqa.org/

3 PyLint (Siddiq et al., 2024) Static code 
analysis for Python

https://pylint.
pycqa.org/

4 Bandit (Siddiq et al., 2024) Security analysis 
for Python

https://bandit.
readthedocs.io/

5 PMD (Moratis et al., 2024) Code quality and 
style checker

https://pmd.
github.io/

6 CheckStyle (Guo, 2024) Style and 
convention checker 
for Java

https://
checkstyle.org/

7 LeetCode Online Judgment 
(Liu et al., 2024b), (Bucaioni 
et al., 2024)

Functional 
correctness 
evaluation

https://leetcode.
com/

8 SonarQube (Su et al., 2023) Code quality and 
security

https://www.
sonarqube.org 

lower bound rather than a complete assessment of potential 
correctness beyond the first failure (Liu et al., 2024b).

I. Evaluation Challenges (RQ9)
Various challenges and issues arise when using LLMs 

for code generation, especially in evaluating their ability to 
generate accurate and efficient code. The main challenges are 
listed below:
•	 Lack of standardized evaluation metrics: There are no 

universally accepted metrics for assessing code generation. 
Metrics, such as Pass@k and BLEU are used in many 
evaluation studies, but they may not reflect the full quality, 
correctness, or security of the generated code (Paul, Zhu and 
Bayley, 2024a).

•	 Functional correctness versus syntactic similarity: 
A particular issue is the balance between functional 
correctness (i.e., does the code do what it was intended 
to do?) and syntactic similarity (i.e., how closely does the 
generated code resemble the reference solution?). While 
functional correctness is more important, it is challenging 
to assess automatically, particularly for complex tasks. 
Syntactic similarity metrics, such as BLEU may not 
accurately reflect the usability or correctness of the generated 
code, which can lead to different findings and conclusions 
(Paul, Zhu and Bayley, 2024b).

•	 Security and reliability concerns: LLMs can generate 
code that contains security vulnerabilities identified in the 
Common Weakness Enumeration (CWE). Evaluating the 
security of generated code requires specialized tools, such 
as CodeQL; still, they may produce false positives or miss 
specific vulnerabilities. In addition, the security of generated 
code can vary significantly depending on the prompt and the 
model’s training (Majdinasab et al., 2024).

•	 Complexity and maintainability: Generated code may be 
overly complex or challenging to maintain, even if it is 
functionally correct. Metrics, such as cyclomatic complexity 
and lines of code help in understanding the complexity of 
the code, but they do not fully capture the readability or 
maintainability of the code. Human evaluation is often 
necessary to assess these aspects, which is costly, time-
consuming, and subjective (Clark et al., 2024).

•	 Benchmark limitations: Many benchmarks used to evaluate 
LLMs are constructed from a single source or lack diversity, 
which may introduce bias and affect the results. Datasets, 
such as HumanEval and MBPP are widely used but do not 
cover real-world programming tasks or applications. As a 
result, the evaluation results are limited to certain situations. 
(Paul, Zhu and Bayley, 2024a).

•	 Prompt sensitivity: The quality of the generated code can 
vary significantly depending on the prompt given to the 
LLM. Even slight modifications to a prompt can result in 
significantly different outputs, making it challenging to craft 
inputs that consistently elicit high-quality code from LLMs. 
This sensitivity to prompts complicates the evaluation 
process, as the results may depend more on the prompt 
design than the model’s capabilities (Liu et al., 2024a).

•	 Token limitations and incomplete code: LLMs have token 
limitations, which can lead to the generation of incomplete or 
cut-off code snippets. This issue is highly prevalent for more 
complex or larger coding tasks, as the code generated can be 
incomplete and fail to meet the expected output. Incomplete 
code is challenging to evaluate, as it may not be possible to 
determine its correctness or functionality (Liu et al., 2024b).

•	 Cross-language evaluation: LLMs are often evaluated on 
a single programming language (e.g., Python), but their 
performance may differ for other languages and application 
domains. Evaluating LLMs for cross-language code 
generation (e.g., translating code from Python to Java) 
introduces additional challenges, as each language has 
syntax, semantics, and best practices. (Rai et al., 2024).

•	 Evaluation of multi-round fixing: In several cases, LLMs 
need several prompts and rounds of fixing to get the desired 
output in code generation. Evaluating the effectiveness 
of these multi-prompt rounds is difficult since it means 
monitoring the progression of the output code through 
multiple iterations, and the final code could be influenced 
by the quality of the user’s feedback and prompts (Liu 
et al., 2024b).

•	 Model version and updates: The specific version of the model 
used in evaluations can significantly impact the results. 
For example, newer models, such as ChatGPT may have 
improved capabilities, making comparing results across 
different versions difficult (Majdinasab et al., 2024).

•	 Lack of hardware code evaluation: Many LLMs are primarily 
evaluated on high-level programming languages (e.g., 
Python and Java) and lack evaluation frameworks for HDLs, 
such as Verilog and VHDL. This limits their applicability in 
hardware design and verification tasks, where specialized 
knowledge and syntax are required (Afsharmazayejani 
et al., 2024).
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•	 Efficiency and cost: Modern LLMs face significant 
challenges related to efficiency and performance. Despite 
advances in optimizing the inference process, they still 
require expensive, high-performance GPUs to operate 
effectively (Beurer-Kellner, Vechev and Fischer, 2023). 
This limitation drives many researchers to rely on hosted 
cloud-based models, where models with advanced features 
are often accessible only through paid APIs, increasing 
computational and financial costs.

J. Future Research Directions (RQ10)
Several possible directions for future research were 

identified based on the analysis of selected studies. The 
following points summarize these potential directions:
•	 Evaluation of non-determinism: Future research should 

address the non-deterministic (i.e., the inconsistency in the 
code candidates generated across different requests with 
identical prompts) nature of LLMs by developing evaluation 
frameworks that account for variability in generated 
output. This includes exploring methods that can reduce 
randomness, enhance consistency, and study the influence 
of prompts on non-determinism.

•	 Development of comprehensive metrics: Future work should 
develop metrics that capture not only functional correctness 
but also code quality, security, efficiency, readability, and 
maintainability. Such metrics should also be reliable and 
aligned with human judgment, leading to better models and 
more accurate performance evaluations.

•	 Evaluation of code summarization and documentation: 
Future research should explore LLMs’ ability to generate 
accurate and useful code summaries, comments, 
and documentation. This includes evaluating the 
readability, relevance, and completeness of generated 
explanations.

•	 Development of specialized benchmarks: Future work 
should focus on creating benchmarks for real-world coding 
tasks, including complex dependencies, the use of external 
libraries, and even project-specific contexts.

•	 Evaluation of code generation for real-time systems: Future 
work should focus on LLMs’ ability to write code for real-
time systems, such as embedded and Internet of Things 
systems. This includes checking the power, dependability, 
and safety of the code output in real-time conditions.

•	 Multilingual code generation evaluation: Future research 
should compare the performance of LLMs on code 
generation from prompts in other languages (e.g., Arabic) 
and explore these models’ multilingual capabilities.

•	 Security and correctness in code generation: Further studies 
may consider the impact of different prompting strategies 
and model selection on the security and correctness of 
generated code. Furthermore, examine the balance between 
program security and functionality.

•	 Quality and consistency of AI-generated code: Future 
research should explore the quality and consistency of 
ChatGPT-generated code across multiple metrics and 
programming languages. Further studies should investigate 
the real-world practicality of the code generated and how 

many modifications the code will need before it can be 
incorporated into projects.

•	 Evaluation of new models: New models should be evaluated 
for their performance in specialized tasks, such as hardware 
design (e.g., Verilog, VHDL), low-level programming (e.g., 
Assembly), and real-time systems (e.g., Arduino-based 
applications).

•	 Prompt engineering techniques: Future work should 
investigate manual and automated approaches to prompt 
design for code generation. This includes evaluating 
advanced techniques, such as chain-of-thought prompting, 
few-shot examples, and template-based methods to enhance 
code relevance and quality, as well as developing algorithms 
that automatically generate, refine, and optimize prompts 
based on feedback (e.g., execution success, style metrics, 
or user preferences).

IV. Threat to Validity
Many factors may impact the results of surveys. Thus, to 

prevent validity risks, the following steps were taken into 
consideration for this paper:
•	 External validity: This is regarding the literature search; we 

performed a broad literature search for this survey. Great 
effort was made to cover well-known sources as the primary 
databases to ensure good coverage and representation of 
relevant studies.

•	 Construct validity: This is regarding the accuracy of data 
extraction. Cited sources emphasize that the precision 
of extracted data increases the precision of the expected 
survey outcomes. Human error is always possible, so it 
was reasonable to adopt a mixed approach. At first, data 
were extracted manually and then cross-checked using an 
LLM using manual prompts. For instance, after manually 
extracting which programming language is used (RQ1), 
the documents were prompted into a model asking, 
“What programming language is used in this paper?” The 
results were compared against manual extraction, and the 
differences found were addressed, if any.

•	 Internal validity: This concerns study reproducibility, a key 
aspect of research validity. To address this, steps include 
strategies for search, inclusion criteria, and data extraction 
processes, and the methodology used is explained in detail. 
This transparency will facilitate other researchers repeating 
the survey to authenticate and trust the findings from 
servicing the survey.

V. Conclusion
The evaluation of LLMs in code generation is a rapidly 
evolving field with significant potential to transform software 
development. This survey has comprehensively analyzed 
studies published between 2021 and 2024, addressing ten 
key RQs related to evaluating LLMs in code generation. 
The findings show that Python, Java, and C++ are the most 
frequently used programming languages in these evaluations, 
while metrics, such as Pass@k and BLEU are widely employed 
to assess code quality. The programming scenarios in which 
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LLMs were applied are diverse, including code generation, 
code refactoring, debugging, and even providing security 
support. The efficiency of LLMs relies heavily on the quality 
of prompt engineering, which remains a critical area for further 
research. Furthermore, security remains a significant concern, 
as generated code often contains vulnerabilities that require 
scrutiny and analysis using tools, such as CodeQL. While it 
is evident that various benchmarks are used in evaluations, the 
lack of standardization poses challenges for comparing results 
across different studies. The results achieved by ChatGPT are 
positive but need to be supported by more comprehensive 
evaluation frameworks that consider the full spectrum of code 
quality, security, and maintainability.

We recommend future research directions to focus on 
developing comprehensive metrics and benchmarks that 
integrate specific aspects of human cognition and real-world 
coding scenarios. Furthermore, addressing non-determinism 
alongside cross-language evaluation and multi-round 
code fixing is essential for the field’s growth. This survey 
contributes to the present studies by highlighting present 
practices, identifying existing gaps, and proposing future 
research directions, aiming to improve the trustworthiness 
and effectiveness of the code generated by LLMs.
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