
 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12159 83

A Systematic Survey on Large Language Models for
Code Generation

Sardar K. Jabrw and Qusay I. Sarhan†
Department of Computer Science, College of Science, University of Duhok,

Duhok, Kurdistan Region – F.R. Iraq

Abstract—The rapid development of large language models
(LLMs) has transformed code generation, offering powerful tools
for automating software development tasks. However, evaluating
generated code’s quality, security, and effectiveness remains a
significant challenge. The present systematic survey comprehensively
analyses studies published between 2021 and 2024, focusing on
utilizing LLMs in the code generation process. The survey explored
ten research questions, such as the most commonly used programming
languages, the metrics employed to evaluate the quality of code, and
scenarios in which LLMs are applied by developers during the
software development process, outlining the scope in which prompt
engineering influences code generation and security concerns with
the types of benchmarks, models evaluated, and code analysis tools
used in studies. The findings indicate that the most frequently used
evaluation metrics in code generation are Pass@k and Bilingual
Evaluation Understudy. It also shows that Python, Java, and C++ are
the most widely used languages. Furthermore, identifying security
vulnerabilities and establishing robust evaluation metrics remain
challenges. This survey underlines present practices, detects gaps,
and suggests future research to enhance the reliability and security
of code generated by LLMs in real-world applications.

Index Terms – Benchmarking, Code Generation, Evaluation
Metrics, Large Language Models.

Introduction
The advent of large language models (LLMs) has revolutionized
the field of code generation, offering unprecedented
capabilities in automating software development tasks (Brown
et al., 2020). These models have proven to be remarkable in
generating code from natural language descriptions, completing
code snippets, and even repairing errors in code (Chen et al.,
2021). This enables software developers to focus on complex
tasks in their code (Mendes, Souza and De Souza, 2024). On
the other hand, evaluating the efficiency, quality, and security
of the generated code is still challenging (Clark et al., 2024).

Some of the main problems that researchers and developers
are dealing with are the absence of standardized evaluation
metrics and the difficulty in ensuring functional correctness,
security, and maintainability of the generated code (Paul, Zhu
and Bayley, 2024a).

This systematic survey aims to review the literature published
between 2021 and 2024, focusing on using LLMs for code
generation. With ten specific research questions (RQs), which
examine the most frequently used programming languages
in evaluations, the metrics used for evaluating code quality,
and the scenarios in which developers apply LLMs during
the software development process. Furthermore, the survey
explores the impact of different prompts on the code generation
process, the security of the generated code, the characteristics
of the benchmarks used for evaluations, the LLMs, which had
been evaluated, and the code analysis tools used in studies.

This survey uses a methodology that involves a
comprehensive literature survey, conducted using well-
known literature databases, to identify, select, and analyze
relevant publications. The findings will contribute to a deeper
understanding of the capabilities and limitations of LLMs
in code generation, highlighting areas for improvement and
suggesting future research directions. Moreover, it aims to
serve as a valuable resource for researchers and developers
by providing insights regarding the present use of LLMs for
code generation and guiding future efforts to improve the
reliability and security of the generated code.
The survey is motivated by multiple factors, as follows:
a) The growing application of LLMs in generating, completing,

and optimizing source code necessitates a detailed analysis
of evaluation methodologies to assess their functional
correctness, security, and maintainability.

b) A comprehensive survey study can assist researchers and
developers by consolidating knowledge on evaluation
approaches, highlighting strengths, limitations, and
opportunities for improving the field.

c) Despite the rapid progress of LLMs, there is still a noticeable
gap in survey studies specifically addressing the evaluation
criteria, benchmarks, and metrics for code generation, making
this study a significant contribution to advancing the field.

The remaining parts of this survey paper are organized as
follows: Section II defines the relevant research for this study.
Section III describes the research methodology employed in
this study. Section IV defines the findings and outcomes of

ARO-The Scientific Journal of Koya University
Vol. XIII, No. 2 (2025), Article ID: ARO.12159. 17 pages
DOI: 10.14500/aro.12159
Received 29 March 2025; Accepted 22 July 2025
Regular review paper; Published: 06 August 2025
†Corresponding author’s e-mail: qusay.sarhan@uod.ac
Copyright © 2025 Sardar K. Jabrw and Qusay I. Sarhan. This is
an open-access article distributed under the Creative Commons
Attribution License (CC BY-NC-SA 4.0).

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

84 http://dx.doi.org/10.14500/aro.12159

the study. Section V addresses the risks related to validity.
The study’s conclusions are presented in Section VI.

II. Related Works
This section briefly reviews the relevant research on this

topic. Foundational surveys, such as (Fan et al., 2023) and
(Chowdhury and Haque, 2023), provided an overview of LLM
applications across domains, including code synthesis. These
studies highlight the benefits and limitations of using LLMs
for code generation. In their studies, (Nazir and Wang, 2023)
and (Kalyan, 2024) further expanded on this by discussing
the development and capabilities of ChatGPT and the GPT-
3 family, exploring their success across multiple fields, such
as education, healthcare, and legal reasoning. They also
addressed ChatGPT’s limitations, such as the generation of
false information, biases, and other ethical issues. Similarly,
(Wang and Chen, 2023) explored the use of LLMs in code
generation and highlighted three main applications: Generating
code from natural language descriptions, completing code
snippets, and automatically repairing bugs.

Despite impressive advancements, several studies reveal
core challenges. A prominent concern is evaluation: How
to reliably assess the quality, correctness, and efficiency of
generated code. In their study (Paul, Zhu and Bayley, 2024a)
specifically emphasized the growing reliance on LLMs in
automated software engineering tasks, also focusing on the
limitations of existing evaluation metrics. Similarly, (Lu et
al., 2024) thoroughly examined the datasets used to evaluate
LLMs for code generation, classifying datasets that reflect
diverse programming skills and emphasizing the mismatch
between present benchmarks and real-world scenarios.
Similarly, (Chang et al., 2024) detailed the application of
LLM evaluation techniques, focusing on three dimensions
of what, where, and how to evaluate them. They have
collected and summarized tasks in various areas, such as
natural language problems, reasoning, medical usage, ethics,
education, and even agent applications. Ethical and security
concerns also arise. Another study by (Yao et al., 2024)
provided a comprehensive review of LLMs, categorizing their
impact into “The Good” (beneficial applications in security),
“The Bad” (offensive uses), and “The Ugly” (vulnerabilities
and defenses). They highlighted that LLMs enhance code
security and data privacy, often outperforming traditional
methods, but are also exploited for attacks, especially user-
level ones, due to their human-like reasoning.

Recent surveys have aimed to systematize knowledge
across multiple subdomains. In their study (López Espejel
et al., 2023) provided a thorough review of state-of-the-art
methods for generating Java code from natural language text.
The methods are divided into two major groups: Recurrent
Neural Network (RNN)-based and transformer-based. The
Transformer-based methods are divided into encoder-only,
decoder-only, and encoder-decoder models. The review traces
the progress made in using deep learning models for Java code
generation, concentrating on method development, advantages,
and disadvantages. Similarly, (Wan et al., 2024) covered a more
detailed review of deep learning in code intelligence, especially

regarding code completion, code representation learning, code
search, code summarization, type inference, program synthesis,
deep learning tasks, etc. It depicts the development of neural
architectures from RNNs and convolutional neural networks
to modern Transformers and graph neural networks. In their
study, (Sharma et al., 2024) through a systematic review, they
categorized twelve software engineering tasks, including code
completion, program synthesis, and vulnerability analysis.
Their findings indicate growing hopes for using machine
learning techniques for source code analysis, and they pointed
out factors, such as standard dataset existence, reproducibility,
and hardware resources as challenges. The authors in (Hou et
al., 2024) offer a systematic literature review of 395 papers on
LLMs in software engineering, identifying 85 distinct tasks
and affirming the dominance of decoder-only models, such as
GPT-4 in development and repair tasks.

Our systematic survey distinguishes itself from prior studies
by delivering a comprehensive research analysis that utilizes
LLMs in the code generation process. While existing studies
often focus on isolated aspects – such as evaluation metrics (Paul,
Zhu and Bayley, 2024a; Wang and Chen, 2023), applications
(Fan et al., 2023), or datasets (Lu et al., 2024); this survey
systematically addresses 10 interconnected RQs. Unlike surveys
limited to pre-2023 research (Fan et al., 2023; Chowdhury and
Haque, 2023), the present survey analysis incorporates recent
developments by covering studies published between 2021
and the end of 2024, capturing significant progress after the
release of models, such as GPT-4 and CodeLlama. In addition,
it uniquely identifies code analysis tools used (e.g., CodeQL) in
studies and their limitations, categorizes and analyzes evaluation
metrics, explores prompt strategies along with their benefits
and limitations, and investigates the security of generated code.
Furthermore, 28 benchmarks (e.g., HumanEval, APPS) are
analyzed. Finally, by highlighting key gaps and proposing future
research directions, this survey aims to enhance the reliability
and security of the generated code, serving as a valuable
resource for researchers and developers.

III. Research Methodology
Inspired by (Petersen, Vakkalanka and Kuzniarz, 2015), the

methodology used to conduct this survey includes five stages,
as shown in Fig. 1. First, the initial stage involves identifying
the study’s objectives and various RQs. Second, the search
process begins, during which a strategy is defined to identify
relevant publications related to the survey topic. Third, the
selection and filtering of the publications obtained in the
previous stage are carried out. Next, the fourth stage is data
extraction, where the relevant publications are reviewed and
the key information required to answer the identified RQs is
extracted. The final stage includes reporting and documenting
the results. Details of these five steps, which are presented in
the following subsections.

A. Identification of Research Objectives and Questions

Research objectives
This survey aims to comprehensively analyze studies

published between 2021 and 2024, focusing on the LLMs for

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12159 85

Fig. 1. Five-stage methodology for conducting the systematic survey.

code generation. The year 2021 was chosen as the starting
point, as the best of our knowledge, the study (Chen et al.,
2021) was the first to evaluate LLMs for code generation,
which introduced Codex, a model fine-tuned on GitHub code,
marking a significant advancement in the application of LLMs
for code generation. By focusing on this period, the survey
ensures that no significant studies are overlooked, capturing the
full scope of recent developments of code generation by LLMs.
By addressing ten related RQs, this survey identifies, reviews,
and categorizes state-of-the-art contributions in the field of code
generation, thereby contributing to the advancement of research
and development in this rapidly evolving area.
RQs

This survey has identified and addressed several RQs, each
of which refers to a specific facet of the topic, as outlined
below:
•	 RQ1: Which programming languages are used in evaluating

LLMs performance for code generation tasks?
•	 RQ2: Which metrics are most frequently used to evaluate

the quality of LLM-generated code?
•	 RQ3: For what programming scenarios, duties, and objectives

are individuals using LLMs?
•	 RQ4: How do different prompts impact the effectiveness of

LLMs in code generation tasks?
•	 RQ5: Is the code generated by LLMs secure?
•	 RQ6: What are the characteristics of benchmarks used for

evaluating the performance of LLMs in code generation
tasks?

•	 RQ7: Which LLMs are used in the evaluation of code
generation?

•	 RQ8: Which code analysis tools are used to evaluate code
generated by LLMs?

•	 RQ9: What are the challenges in evaluating LLMs for code
generation?

•	 RQ10: What are the potential future research directions for
using LLMs for code generation?

B. Search Strategy

Literature sources
Well-known standard online databases, such as IEEE

Xplore, Elsevier Science Direct, and ACM Digital Library,
indexing publications relevant to this survey’s scope, were
selected as literature sources. Each database was chosen for
its comprehensive collection of high-quality, peer-reviewed

research in engineering, computer science, and technology,
making it ideal for this survey.
Search string

The following search string was used to identify
publications relevant to this survey within the literature
sources:
“(Code Generation) AND (LLM OR Large Language Model
OR Generative AI)”

All search terms were linked using Boolean operators.
“OR” connected synonyms or related terms, while “AND”
linked the main terms.

C. Paper Selection

Paper
Inclusion and exclusion criteria were defined to determine

the relevance of publications. The criteria were applied based
on the titles, abstracts, and full contents. Fig. 2 illustrates the
quantity of included and excluded papers at each phase of
the selection process. After applying the following inclusion/
exclusion criteria, 74 papers were included in this survey.

Inclusion criteria
•	 Publications that utilize LLMs in the code generation

process. These studies were selected because they focus on
evaluating the performance and effectiveness of LLMs in
generating code across various programming tasks.

•	 Publications published online from 2021 to 2024. Our
literature search indicates that studies evaluating LLMs for
code generation began to emerge after 2021.

Exclusion criteria
•	 Publications not published in English.
•	 Publications not directly related to the research topic.
•	 Publications that are not peer-reviewed (e.g., gray literature)
•	 Publications not published electronically.
•	 Duplicate publications.
•	 Publications without precise results.

Table I lists all the studies used in this study and the RQ/
Section they support.

D. Data Extraction and Analysis
Data were systematically extracted from the selected

papers and subjected to extensive analysis. This process

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

86 http://dx.doi.org/10.14500/aro.12159

TABLE I
Mapping of Included Papers to Their Supported RQ/Section

Paper RQ/section supported # Paper RQ/section supported
1 (Afsharmazayejani et al., 2024) RQ1, RQ7, RQ9 38 (Liu et al., 2024a) RQ1, RQ2, RQ4, RQ6, RQ7
2 (Aggarwal et al., 2024) RQ1, RQ2, RQ6, RQ7 39 (Liu et al., 2023) RQ1, RQ2, RQ6, RQ7
3 (Al-Khafaji and Majeed, 2024) RQ1, RQ7, RQ8 40 (Liu et al., 2024b) RQ1, RQ7, RQ8, RQ9
4 (Beurer-Kellner, Vechev and Fischer, 2023) RQ2, RQ4, RQ9 41 (López Espejel et al., 2023) Related Work
5 (Black, Rimal and Vaidyan, 2024) RQ1, RQ2, RQ4, RQ7 42 (Lu et al., 2024) Related Work
6 (Bucaioni et al., 2024) RQ1, RQ2, RQ7, RQ8 43 (MacEdo et al., 2024) RQ1, RQ2, RQ4, RQ6, RQ7
7 (Chang et al., 2024) Related work 44 (Majdinasab et al., 2024) RQ1, RQ5, RQ7, RQ8
8 (Chen et al., 2021) Related work 45 (Mendes, Souza and De Souza, 2024) RQ3
9 (Chowdhury and Haque, 2023) Related work 46 (Miah and Zhu, 2024) RQ1, RQ6, RQ7
10 (Clark et al., 2024) RQ1, RQ2, RQ6, RQ7, RQ9 47 (Moradi Dakhel et al., 2023) RQ2, RQ6, RQ7
11 (Corso et al., 2024) RQ1, RQ2, RQ7 48 (Moratis et al., 2024) RQ1, RQ3, RQ6, RQ7, RQ8
12 (Cotroneo et al., 2024) RQ1, RQ2, RQ5, RQ6, RQ7 49 (Nazir and Wang, 2023) Related Work
13 (de-Fitero-Dominguez et al., 2024) RQ1, RQ2, RQ7 50 (Nikolaidis et al., 2024) RQ1, RQ2, RQ4, RQ7
14 (DeLorenzo, Gohil and Rajendran, 2024) RQ7 51 (Niu et al., 2023) RQ2, RQ6, RQ7
15 (Dong et al., 2024) RQ1, RQ6, RQ7 52 (Niu et al., 2024) RQ2, RQ4, RQ6, RQ7
16 (Du et al., 2024) RQ1, RQ2, RQ4, RQ6, RQ7 53 (Ouyang et al., 2024) RQ1, RQ2, RQ4, RQ6, RQ7
17 (Dumitran et al., 2024) RQ1, RQ2, RQ7 54 (Paul, Zhu and Bayley, 2024a) Related Work
18 (Evtikhiev et al., 2023) RQ1, RQ2, RQ7 55 (Paul, Zhu and Bayley, 2024b) RQ1, RQ2, RQ6, RQ7, RQ9,
19 (Fan et al., 2023) Related work 56 (Petrovic, Konicanin and Suljovic, 2023) RQ1, RQ7
20 (Feng et al., 2023) RQ1, RQ7, RQ8 57 (Rai et al., 2024) RQ1, RQ4, RQ7, RQ9
21 (Geng et al., 2023) RQ1, RQ2 58 (Rizvi et al., 2024) RQ1, RQ7
22 (Gu et al., 2024) RQ1, RQ2, RQ7 59 (Sakib, Khan and Karim, 2023) RQ1, RQ2, RQ7
23 (Guo, 2024) RQ1, RQ2, RQ7, RQ8 60 (Sharma et al., 2024) Related Work
24 (Hajipour et al., 2024) RQ1, RQ5, RQ6, RQ8 61 (Siddiq et al., 2024) RQ1, RQ3, RQ5, RQ8
25 (Hamer, D’Amorim and Williams, 2024) RQ5, RQ7, RQ8 62 (Su et al., 2023) RQ1, RQ2, RQ5, RQ6, RQ7, RQ8
26 (Hou et al., 2024) Related work 63 (Tony et al., 2023) RQ1, RQ5, RQ6, RQ7
27 (Jesse et al., 2023) RQ4, RQ6 64 (Vijayaraghavan et al., 2024) RQ1, RQ6, RQ7
28 (Jiang et al., 2024) RQ1, RQ2, RQ4, RQ7 65 (Wan et al., 2024) Related Work
29 (Jin et al., 2024) RQ3, RQ6, RQ7 66 (Wang and Chen, 2023) Related Work
30 (Kalyan, 2024) Related Work 67 (Wang et al., 2024) RQ3
31 (Kashanaki, Zakharov and Renau, 2024) RQ1, RQ2, RQ6, RQ7 68 (Xiao et al., 2024) RQ6
32 (Khojah et al., 2024) RQ3, RQ4, RQ7 69 (Xu et al., 2023) RQ1, RQ2, RQ7
33 (Khoury et al., 2023) RQ1, RQ5, RQ7 70 (Yan, Gao and Liu, 2023) RQ1, RQ2, RQ6, RQ7, RQ8
34 (Kou et al., 2024) RQ1, RQ2, RQ7 71 (Yang et al., 2024) RQ1, RQ2, RQ7
35 (Koubaa et al., 2023) RQ1, RQ2, RQ6 72 (Yao et al., 2024) Related Work
36 (Li et al., 2024a) RQ1, RQ2, RQ4, RQ6, RQ7 73 (Yu et al., 2024) RQ1, RQ2, RQ4, RQ6, RQ7
37 (Li et al., 2024b) RQ1, RQ7 74 (Zhao et al., 2024) RQ1, RQ6, RQ7,

Fig. 2. Outcomes of the paper selection process.

ensured that a comprehensive and detailed understanding,
enabling the study to effectively address the identified RQs
with clarity and accuracy.

E. Documentation
In the final stage, the findings extracted and analyzed from

the selected studies are synthesized into a structured paper
that directly addresses the RQs. This includes organizing
insights around key focus areas, such as programming

languages, evaluation metrics, security, benchmarks, and
potential future direction.

III. Result

The study addressed each identified RQ through a detailed
analysis of selected publications based on the survey’s
findings, each RQ is summarized with a short title and
discussed in its respective subsection.

A. Programming Languages for Evaluation (RQ1)
All selected studies were reviewed to determine which

programming languages were used to evaluate the LLMs’
efficiency in code generation. Most studies focused on three
main languages, which were 31 papers focusing on Python, 18
on Java, and 12 on C++. A few of them researched multiple
programming languages, which indicated the versatility
of LLMs. However, in the case of hardware programming
languages, such as Verilog and very high speed integrated

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12159 87

circuit hardware description language (VHDL), significantly
fewer papers existed, with only 4 papers focusing on Verilog
and 2 on VHDL. Table II shows that the programming
language with the highest number of publications is Python,
due to its familiarity, ease of use, and flexibility. Python is
one of the most widely adopted programming languages,
offering many libraries and frameworks that cover a broad
range of applications. GitHub and other public repositories
also offer plentiful Python code for training and testing
LLMs. Moreover, well-known datasets, such as HumanEval
and Mostly Basic Python Problems (MBPP) primarily use
Python because it is the most dominant coding language.
Its widespread use in education and research ensures that
researchers are familiar with the language, reinforcing its
position as the preferred choice for evaluating LLMs.

B. Metrics for Code Quality (RQ2)
The analysis of the metrics used during evaluations reveals

that a wide range of studies employed diverse metrics to
assess the performance and quality of the generated code.
Many of these studies employed combinations of metrics
across different categories, reflecting an effort to adopt
a more holistic evaluation approach. Namely, functional
correctness metrics, such as pass ratio/pass@k and accuracy
rate, which assess the correctness of the generated code,
are among the most commonly used. Similarity metrics,
such as Bilingual Evaluation Understudy (BLEU) and
CodeBLEU, which evaluate the similarity of the generated
codes to developer-written code, are widely used. Similarly,
measuring cyclomatic complexity alongside counting lines
of code (LOC) tends to be used to evaluate the logical and
structural complexity of the generated code. In adition, Time
and space complexity are also widely used together to assess
the performance of generated code in terms of execution
speed and memory usage. Moreover, generation speed and
average completion time are used as indicators of LLMs’
responsiveness to real-world demands and often used as
usability metrics.

All reviewed studies indicate that none of the models can
perform best in all types of tasks. Consequently, no single
useful and successful evaluation metric has been explicitly
identified. When analyzing which metrics are most robust for
evaluating LLMs in code generation, it becomes clear that
no single metric is universally superior; a robust evaluation
necessitates a multifaceted approach.

Functional correctness metrics, such as pass ratio/pass@k
are core, directly assessing if generated code passes tests,
making them highly relevant for utility. However, Pass@k has
limitations, including its dependence on test suite adequacy,
which can be inadequate, leading to false judgments. Another
significant limitation is that users do not usually run the
LLM several times, so pass@k does not reflect its usability.
While it demonstrates the randomness of the LLM’s output,
it does not align with a user’s typical interactive process of
generating code with an LLM, which might involve multiple
attempts with input amendments until a satisfactory solution
is obtained.

TABLE II
Programming Languages used in Evaluations of LLMs

Programming
languages

Published papers Total

1 Python (Yan, Gao and Liu, 2023), (Nikolaidis et al., 2024),
(Clark et al., 2024), (Su et al., 2023), (Xu et al.,
2023), (Majdinasab et al., 2024), (Black., Rimal
and Vaidyan, 2024), (Zhao et al., 2024), (Hajipour
et al., 2024), (Yu et al., 2024), (Aggarwal
et al., 2024), (Rai et al., 2024), (Du et al., 2024),
(Al-Khafaji and Majeed, 2024), (Dumitran, Badea
and Muscalu, 2024),
(MacEdo et al., 2024), (Sakib, Khan and Karim,
2023), (Khoury et al., 2023), (Feng et al., 2023),
(Tony et al., 2023), (Liu et al., 2024b), (Siddiq
et al., 2024), (Geng et al., 2023), (Gu et al., 2024),
(Ouyang et al., 2024), (Kou et al., 2024), (Dong
et al., 2024), (Jiang et al., 2024), (Li et al., 2024a),
(Koubaa et al., 2023), (Evtikhiev et al., 2023)

31

2 Java (Xu et al., 2023), (Yu et al., 2024), (Rai et al.,
2024), (MacEdo et al., 2024), (Corso et al., 2024),
(Liu et al., 2024a), (Khoury et al., 2023), (Guo,
2024), (Liu et al., 2024b), (Siddiq et al., 2024),
(Paul, Zhu and Bayley, 2024b), (Geng et al., 2023),
(Gu et al., 2024), (Li et al., 2024b), (Yang et al.,
2024), (Jiang et al., 2024), (Koubaa et al., 2023),
(Bucaioni et al., 2024)

18

3 C++ (Rai et al., 2024), (Rizvi et al., 2024), (Dumitran,
Badea and Muscalu, 2024), (MacEdo et al., 2024),
(Khoury et al., 2023), (Liu et al., 2024b), (Yang
et al., 2024), (Gu et al., 2024), (Li et al., 2024a),
(de-Fitero-Dominguez et al., 2024), (Koubaa et al.,
2023), (Bucaioni et al., 2024)

12

4 C (Black, Rimal and Vaidyan, 2024), (Hajipour
et al., 2024), (Rai et al., 2024), (MacEdo et al.,
2024), (Khoury et al., 2023), (Liu et al., 2024b),
(de-Fitero-Dominguez et al., 2024)

7

5 Verilog (Afsharmazayejani et al., 2024), (Kashanaki,
Zakharov and Renau, 2024), (Kashanaki, Zakharov
and Renau, 2024), (Liu et al., 2023)

4

6 JavaScript (Liu et al., 2024b), (Moratis et al., 2024), (Jiang
et al., 2024)

3

7 VHDL (Afsharmazayejani et al., 2024), (Vijayaraghavan
et al., 2024)

2

8 R (Miah and Zhu, 2024) 2
9 Arduino (Petrovic, Konicanin and Suljovic, 2023) 1
10 Go (MacEdo et al., 2024), (Gu et al., 2024), (Jiang

et al., 2024)
3

11 Assembly
Language
(32)

(Cotroneo et al., 2024) 1

12 HTML (Khoury et al., 2023) 1

Human-centric metrics, such as #attemptk (this metric
focuses on the average number of user attempts to obtain a
satisfactory solution), and direct human evaluation offer
insights into usability, understandability, and alignment with
developers’ needs, yet they are time-consuming, expensive,
and subjective. In addition to the Similarity metrics, such as
BLEU, are often considered suboptimal for code generation
that was initially designed for machine translation. BLEU
primarily measures n-gram overlap between a candidate text
and a reference text. While this works reasonably well for
natural language, where semantic similarity often correlates
with lexical overlap, code has a much stricter syntax and
semantics. Hence, CodeBLEU metric attempts to address

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

88 http://dx.doi.org/10.14500/aro.12159

these limitations by incorporating program-specific features
which extends traditional BLEU by including four sub-
metrics: N-gram match (traditional BLEU), weighted n-gram
match (assigning different weights to token types), abstract
syntax tree match (capturing syntactic similarity), and data
flow match (evaluating semantic equivalence through data
flow graphs). While described as more accurate and better
adapted for code generation, CodeBLEU still has recognized
limitations. It can be overly strict and underestimate a model’s
performance. It has been found to perform no better than more
generic metrics from machine translation in correlation with
human assessment. N-gram-based components of CodeBLEU
still suffer from a poor correlation with human scores because
of their inability to capture semantic meaning. Therefore, a
truly robust evaluation of LLM-generated code requires an
integration of execution-based functional correctness, human
judgment for qualitative aspects, domain-specific metrics, and
continuous adaptation to the evolving nature of LLMs.

A truly robust evaluation of LLM-generated code requires
a comprehensive and multifaceted strategy that integrates
execution-based functional correctness, human judgment for
qualitative aspects, domain-specific metrics (e.g., for security
or creativity), and the development of dynamic and evolving
evaluation systems to keep pace with the rapid advancements
of LLMs and to counter issues, such as data contamination.
This continuous evolution necessitates an adaptive and
comprehensive evaluation strategy considering various
aspects of code quality and real-world applicability.

Further details on the metrics and their categories are
presented in Table III, and they are briefly discussed below.
•	 Functional correctness: This category evaluates whether the

generated code produces the correct outputs for given inputs.
The most common metric in this category is Pass@k, which
evaluates how many codes out of k attempts were able to
pass a set of pre-defined test cases. It is popular for directly
testing execution success, easy to calculate, and aligns with
popular benchmarks, such as HumanEval.

•	 Syntactic closeness/similarity: This assesses how structurally
a generated code is similar to a reference code (developer-
written code) in terms of syntax, variable names, code length,
etc. The dominant metric for measuring code similarity is
BLEU, which was discussed above.

•	 Code complexity: This quantifies how complex code is to
read, debug, or maintain. Lines of Code (LOC) is the most
used metric due to its simplicity, offering a universally
accessible and easy-to-calculate measure of code complexity.
However, it does not account for code quality, structure, or
readability, and more extended code is not necessarily more
complex or challenging to maintain. In addition, LOC can be
influenced by formatting styles or language syntax, making
it a blunt tool for deeper evaluation of code efficiency.

•	 Code performance: This measures the computational
efficiency (e.g., speed and memory usage) of the generated
code. Time complexity (e.g., runtime scaling) is mostly
adopted, as slow code can significantly undermine a
solution’s practicality. It reflects algorithmic quality and is

TABLE III
Metrics used in LLM Evaluations and Their Categories

Categories Metrics Published Papers
1 Functional

Correctness
Pass@k (Zhao et al., 2024), (Yu et al., 2024),

(Aggarwal et al., 2024), (Du et al.,
2024), (Niu et al., 2024), (Paul, Zhu
and Bayley, 2024b), (Miah and Zhu,
2024), (Liu et al., 2023), (Dong
et al., 2024), (Jiang et al., 2024), (Li
et al., 2024a)

Accuracy rate (Yan, Gao and Liu, 2023), (Black,
Rimal and Vaidyan, 2024), (Niu
et al., 2023)

Acc@K (Yu et al., 2024)
Pass@TopK (Moradi Dakhel et al., 2023)
Success rate/pass
ratio

(Sakib, Khan and Karim, 2023),
(Ouyang et al., 2024), (Jiang et
al., 2024), (Koubaa et al., 2023),
(Bucaioni et al., 2024), (Moradi
Dakhel et al., 2023)

Exact match
accuracy

(Yang et al., 2024), (Cotroneo et al.,
2024)

Computational
accuracy

(Yang et al., 2024), (MacEdo et al.,
2024)

Compilation
accuracy

(Cotroneo et al., 2024)

Compilation rate,
match success rate,
code extraction
success rate

(MacEdo et al., 2024)

2 Syntactic
Closeness/
Similarity

BLUE (Yu et al., 2024), (Liu et al., 2024a),
(Niu et al., 2023), (Geng et al.,
2023), (Gu et al., 2024), (Liu et al.,
2023), (Gu et al., 2024), (Cotroneo
et al., 2024), (Evtikhiev et al., 2023)

CodeBLEU (Al-Khafaji and Majeed, 2024),
(Corso et al., 2024), (Liu et al.,
2024a), (Gu et al., 2024), (Jiang
et al., 2024), (Evtikhiev et al., 2023)

text2vec (Yan, Gao and Liu, 2023)
Jaccard similarity (Yu et al., 2024)
SacreBLEU (Cotroneo et al., 2024)
Normalized
Levenshtein
similarity

(Corso et al., 2024), (Ouyang et al.,
2024)

OpenAI
Text-Embedding
Ada-002

(Xu et al., 2023)

ROUGE (Geng et al., 2023), (Evtikhiev et al.,
2023)

Perfect predictions
(PP)

(de-Fitero-Dominguez et al., 2024)

METEOR (Geng et al., 2023), (Evtikhiev et al.,
2023)

RUBY (Evtikhiev et al., 2023)
ChrF (Evtikhiev et al., 2023)
Longest common
subsequence (LCS)

(Ouyang et al., 2024)

San Martino’s token
overlapping metrics

(Kou et al., 2024)

Abstract syntax trees
(AST)

(Moradi Dakhel et al., 2023)

SentenceBERT+
cosine similarity
(SBCS)

(Gu et al., 2024)

(Contd...)

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12159 89

TABLE III
(Continued)

Categories Metrics Published Papers
3 Code

Complexity
Lines of code (Nikolaidis et al., 2024), (Dumitran,

Badea and Muscalu, 2024), (Corso
et al., 2024), (Paul, Zhu and Bayley,
2024b), (Kashanaki, Zakharov and
Renau, 2024), (Beurer-Kellner,
Vechev and Fischer, 2023)

Cyclomatic
complexity

(Nikolaidis et al., 2024), (Su et
al., 2023), (Paul, Zhu and Bayley,
2024b), (Moradi Dakhel et al., 2023)

Token count (Nikolaidis et al., 2024), (Xu et al.,
2023)

Cognitive
complexity

(Su et al., 2023), (Paul, Zhu and
Bayley, 2024b)

Line width (Dumitran, Badea and Muscalu,
2024)

Halstead complexity
metrics

(Clark et al., 2024)

McCabe cyclomatic
complexity

(Corso et al., 2024)

Words count (Xu et al., 2023)
4 Code

Performance
Time complexity (Nikolaidis et al., 2024), (Sakib,

Khan and Karim, 2023), (Corso
et al., 2024), (Guo, 2024), (Niu et al.,
2024), (Bucaioni et al., 2024)

Space complexity (Nikolaidis et al., 2024), (Sakib,
Khan and Karim, 2023), (Guo,
2024), (Bucaioni et al., 2024)

5 Usability
and
Productivity

Generation speed (Black, Rimal and Vaidyan, 2024),
(Zhao et al., 2024), (Al-Khafaji and
Majeed, 2024), (Miah and Zhu,
2024)

Average completion
time

(Miah and Zhu, 2024)

Response received (Moradi Dakhel et al., 2023)
#AttemptK (Miah and Zhu, 2024), (Guo, 2024)

easier to analyze than memory usage, particularly in dynamic
environments.

•	 Usability and productivity: This evaluates how well LLMs
can aid developers in their coding tasks. Generation speed
(how fast a code is generated) is a key, as faster outputs
boost productivity in real time. It is tangible and critical for
adoption, unlike subjective usability metrics.

C. Use Cases and Applications (RQ3)
This RQ aims to identify the use cases of LLMs in code

generation and to understand how developers apply these
models in practice, based on an analysis of selected studies.
In various studies (Siddiq et al., 2024), (Jin et al., 2024),
and (Moratis et al., 2024), the authors used the DevGPT
dataset, constructed from real developers’ conversations
with ChatGPT, to identify developer use cases. Furthermore,
(Khojah et al., 2024), (Wang et al., 2024), and (Mendes,
Souza and De Souza, 2024) conducted studies involving
real developers to pose questions and carried out surveys to
evaluate the effectiveness of ChatGPT in supporting software
development tasks and understanding its usage patterns.
The following are the most common use cases, and they are
summarized in Table IV:

TABLE IV
Summary of LLM Usage Categories and Actions

Category Action
1 Code generation and

refactoring
Write this code
Improve this code
Fix this issue
Solve the following problem
Help me fix it

2 Learning, explanation, and
educational support

Example usage (API or Objects)
Explain this code
Ask questions to find the correct way

3 Code optimization,
formatting, and quality
assurance

Request improvements
Request more description
Add specific instructions
Request verification
Point mistake then request a fix
Test my input

4 Documentation and
deployment

Add more context
Request examples

5 Specialized tasks and
miscellaneous use cases

Request another generation
Networking, bioinformatics, or APIs.

•	 Code generation and refactoring: Survey findings indicate that
developers extensively utilize ChatGPT for generating and
refactoring code. For example, developers rely on ChatGPT
to create entire functions or code snippets integrated into their
projects. LLMs also improve existing code by enhancing
its efficiency, readability, and performance. For example,
ChatGPT’s suggestions help developers write more efficient
code (Jin et al., 2024), and often replace web searches,
speeding up access to relevant answers (Wang et al., 2024).

•	 Learning, explanation, and educational support: Studies
reveal that LLMs are valuable educational resources for
developers aiming to learn new programming libraries,
frameworks, or application programming interfaces (APIs).
For example, by using ChatGPT, developers gain insights
into the usage of functions and frameworks, including
machine learning libraries (e.g., PyTorch and TensorFlow)
(Siddiq et al., 2024). ChatGPT explains different portions
of code in detail, outlining how and why specific techniques
are used (Moratis et al., 2024).

•	 Code optimization, formatting, and quality assurance: One
of ChatGPT’s primary strengths is assisting with code
optimization and formatting. Developers use it to improve
code structure, ensuring adherence to best practices and
alignment with coding standards. ChatGPT facilitates the
reorganization, corrects indentation, and applies consistent
naming conventions (Siddiq et al., 2024). It also contributes
to code reviews, offering recommendations to improve code
quality, performance, and readability.

•	 Documentation and deployment: Studies highlight LLM’s
role in documentation and deployment support throughout
the software development lifecycle. Developers use
ChatGPT to write and modify documentation, such as
README files and code comments, simplifying the
communication of complex concepts and facilitating code
sharing (Jin et al., 2024). Besides,

•	 Specialized tasks and miscellaneous use cases: Survey
findings indicate that ChatGPT is used for tasks beyond code

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

90 http://dx.doi.org/10.14500/aro.12159

writing, including networking, data manipulation, and data
streaming operations. Developers also rely on ChatGPT to
tackle complex Software Development Kit (SDK) and API
challenges, such as those involving the Amazon Web Services
(AWS) SDK (Boto3) and Nylas SDK (Siddiq et al., 2024).

D. Prompt Design and Effectiveness (RQ4)
Many studies have thoroughly examined the impact of

different prompts on the effectiveness of LLMs in code
generation tasks. The study by (Black, Rimal and Vaidyan,
2024) highlights the role of security-focused prompts in
improving the security of generated code, demonstrating that
prompts explicitly addressing security flaws significantly
reduce vulnerabilities. Similarly, (Yu et al., 2024) explore how
the choice between original and human-labeled docstrings
affects LLMs’ performance, revealing that models trained on
single-language corpora perform better when prompted with
semantically similar instructions. In their study, (Liu et al.,
2024a) evaluate three levels of prompts for guiding ChatGPT,
showing that carefully constructed prompts can improve
code generation performance, particularly in Text-to-Code
(T2C) tasks. Similarly, (Jesse et al., 2023) compare traditional
prompting techniques with chain-of-thought prompts,
demonstrating that optimization-focused prompts improve

runtime efficiency, especially for complex coding problems.
The authors in (Li et al., 2024a) propose a novel prompting
technique called structured chain-of-thought prompting, which
improves the performance of LLMs in code generation tasks.

However, even the most carefully engineered prompts
can sometimes fail under certain conditions. When the task
description is under-specified, the model may unpredictably
fill in missing details and produce code that diverges from
user intent; overly long or multi-round interactions can
exceed the model’s token limit, causing earlier instructions
to be truncated and resulting in incomplete or incorrect
solutions. The non-deterministic nature of LLMs, where
“the same prompt produces different answers on different
inference executions,” poses a significant challenge for
researchers, as it makes it difficult to determine whether
the proposed output is the optimal solution, especially for
complex and chain-of-thought prompts. Simple template- or
example-based prompts may encourage the model to mimic
superficial features of the demonstrations without truly
understanding the underlying logic, causing failures on edge
cases. Multi-round prompts or repair loops can compound
errors if the model misinterprets an earlier fix, leading to
loops of incomplete or contradictory edits. A summary of
each primary strategy, its benefits, and its common pitfalls

TABLE V
Prompts, Strategies, Benefits, and Common Limitations

Prompting category Strategy Typical benefits Common limitations/failure modes
1 Core prompting

strategies
Zero-Shot prompting
(Ouyang et al., 2024)

It provides a quick baseline output with no
examples and is ideal for rapid prototyping and
broad coverage.

Poor accuracy on complex tasks; highly
non-deterministic.

Few-Shot prompting
(Beurer-Kellner, Vechev and
Fischer, 2023)

Leverages a handful of examples to boost
relevance, style consistency, and alignment with
the desired format.

Tends to overfit to the provided examples
and is highly sensitive to example choice and
ordering.

Chain-of-Thought (CoT)
prompting (Jiang et al., 2024)

Breaks down complex tasks into step-by-step
reasoning, improving correctness on multi-step
logic.

Can produce lengthy, context-heavy rationales
that waste the model’s token.

Structured CoT (SCoT)
prompting (Li et al., 2024a)

Embeds explicit programming structures (loops,
branches) into the reasoning, yielding clearer,
accurate code.

Requires significant effort to design effective
structures; a large prompt size can trigger
truncation and loss of instructions.

Template-based prompting
(Liu et al., 2024a)

Uses fixed prompt skeletons for consistent,
repeatable results on standard tasks.

Breaks down if input deviates slightly from
the template, making it brittle and inflexible to
evolving requirements.

2 Contextual and
framing strategies

Context-rich prompting
(Khojah et al., 2024)

Incorporates domain-specific details (APIs,
docstrings, constraints) to enhance accuracy and
relevance

Large prompts risk exceeding token limits;
outdated context can mislead the model’s
output.

Role-based prompting (Black,
Rimal and Vaidyan, 2024)

Frames the model’s persona (e.g., “As a senior
engineer…”) to influence tone, style, and
domain focus

Limited impact on code correctness; mostly
stylistic.

Iterative/multi-round
prompting (Nikolaidis et al.,
2024)

Enables continuous refinement by feeding back
errors, test outputs, or user corrections

Errors can compound across rounds, leading to
endless correction loops.

3 Control and
constraint-based
strategies

Conciseness requests
prompting (Liu et al., 2024a)

Produces lean, focused code snippets that are
easier to review and deterministic in behavior

Reduce readability or clarity.

Security-focused prompting
(Black, Rimal and Vaidyan,
2024)

Embeds security checks and mitigations directly
into the prompt, reducing vulnerability risks

It can produce overly defensive or verbose code
at the expense of performance.

Efficiency prompts (Niu
et al., 2024)

Directs the model to optimize for
performance (speed, memory), yielding more
resource-efficient code

Sometimes conflicts with readability or
maintainability.

Format control prompting
(MacEdo et al., 2024)

Enforces a consistent output format (e.g., fenced
code blocks), simplifying automated parsing and
evaluation

Adds prompt overhead; may limit creative
solutions

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12159 91

is shown in Table V. The papers reviewed suggest that the
success of LLMs in code generation tasks is highly dependent
on prompt design. Well-constructed prompts, tailored to task
complexity and model capabilities, can significantly improve
accuracy, security, and optimization. It follows that the
effectiveness of prompt engineering critically determines the
performance of leveraging the capabilities of LLMs.

E. Security of LLM-Generated Code (RQ5)
Several studies (Su et al., 2023), (Majdinasab et al.,

2024), (Hajipour et al., 2024), (Khoury et al., 2023), (Hamer,
D’Amorim and Williams, 2024), (Tony et al., 2023), (Siddiq
et al., 2024), and (Cotroneo et al., 2024) have investigated
the security of generated codes, identifying various
vulnerabilities, such as hard-coded credentials, improper
resource management, and insecure coding patterns.

Several studies examine the security capabilities of specific
LLMs. (Su et al., 2023) Evaluated codes generated by ChatGPT,
Claude, Spark, and Bing AI. Their findings suggest that these
newer models perform better than earlier generations regarding
reliability and security. Similarly, the security of GitHub
Copilot was evaluated by (Majdinasab et al., 2024), who used
CodeQL and manual inspection to detect vulnerabilities in its
suggestions. Their results show that despite post-processing
efforts, Copilot continues to generate vulnerable code for
specific categories of weaknesses. In their study (Hajipour et
al., 2024) explored vulnerabilities in code generated by various
LLMs, including ChatGPT, CodeGen, and Copilot, concluding
that all models could produce code with exploitable flaws.

Other researchers focus on how ChatGPT performs
in real-world development environments. (Siddiq et al.,
2024) Analyzed developers’ interactions with ChatGPT and
evaluated the generated codes; they found several quality
issues, such as undefined variables, insecure comments, and
code that required significant revision before being used.
Their study also explored the integration of this code into
repositories, concluding that ChatGPT’s output is typically
of low quality and not merged directly due to required
modifications. Similarly, (Hamer D’Amorim and Williams,
2024) compared ChatGPT-generated codes with Stack
Overflow codes, concluding that while both sources pose
security risks, ChatGPT demonstrates greater restraint in
producing insecure patterns.

In summary, studies consistently show that LLMs are
prone to generating insecure code, particularly when used
without supervision. While newer models, such as ChatGPT
may be less risky than community-driven platforms, such as
Stack Overflow, they still cannot be trusted to produce secure
code autonomously. Security tools, such as static analyzers,
manual review, and robust testing remain critical. Developers
must treat LLM-generated code as potentially insecure by
default and adopt cautious practices when integrating such
code into production systems.

F. Benchmark/Dataset Characteristics (RQ6)
Benchmarks for evaluating LLMs in code generation

are designed to assess their ability to effectively generate,

understand, and execute code. These benchmarks typically
have datasets containing multiple types of code snippets,
functions, classes, complete programs, or even algorithms.
They also provide prompts ready to be input into LLMs,
often in the form of natural language or partial code, to
guide the code generation process. Test cases are included
to verify if the generated code is correct in terms of both
syntax and semantics. In addition, reference solutions are
often included as ground truth to support accurate validation
and comparison. Most datasets are constructed from public
repositories, coding websites, or textbooks, with links
provided for reproducibility and transparency. Following
a thorough review of the relevant studies, several common
factors were identified across the examined benchmarks: the
dataset name, type of programming language, availability
of test cases, reference solutions, data sources, and overall
dataset accessibility. These findings are summarized in
Table VI. Among the benchmarks reviewed, HumanEval
is one of the most widely used in existing studies, as it
provides a standardized benchmark with well-defined Python
programming problems and corresponding test cases. In
addition, its structured design allows consistent comparisons
across models, fostering reproducibility and comparability in
research. However, newer studies avoid using HumanEval
to evaluate recent models, as it may have been included in
the training data of LLMs, leading to potential biases in the
results.

G. Models used in Evaluations (RQ7)
After analyzing all the relevant studies, it becomes clear

which LLMs were used in each study. Models, such as
ChatGPT (versions 3–5) and other specialized variants
appear frequently in studies, with some research evaluating
more than one LLM. Table VII highlights the LLMs used
in code generation research. When selecting models for
evaluation, researchers balance two axes of choice: Licensing
(open-source vs. proprietary) and architecture (decoder-only
vs. encoder-decoder). Proprietary models, such as OpenAI’s
GPT-3.5, GPT-4, Anthropic’s Claude, and Google’s Gemini,
dominate many applied studies due to their high performance
and convenient API access. GPT-4, for example, regularly
tops benchmarks for functional correctness and security and
generates code with extensive comments (Dumitran, Badea
and Muscalu, 2024). However, the lack of transparency around
their training data and internal weights makes it challenging
to analyze failure modes or attention behaviors. By contrast,
open-source models, such as CodeLlama, StarCoder,
PolyCoder, Mistral, and CodeGen are fully inspectable and
fine-tunable. Recent results show that CodeLlama-Python-7B
can outperform much larger closed-weight models on
benchmarks, such as HumanEval (Niu et al., 2024), and Mistral
variants excel at automated vulnerability repair (de-Fitero-
Dominguez et al., 2024). Yet smaller open-source models
struggle to generate correct solutions from start to finish and
are often constrained by their maximum context size.

Most studies focus on decoder-only transformers, which
are designed to predict the next token based on a given

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

92 http://dx.doi.org/10.14500/aro.12159

TABLE VI
Key Attributes of Benchmarks for Evaluating Code Generation in LLMs

Name Code type Programming
language

Source of data Test cases Reference
solutions

Dataset link

1 LLMSecEval (Tony
et al., 2023)

NL prompt, code
snippets

Python and C MITRE's Top 25
Common Weakness
Enumeration, Authors

- Yes https://github.com/tuhh-softsec/
LLMSecEval/

2 DevGPT (Clark et al., 2024),
(Jin et al., 2024), (Moratis
et al., 2024)(Xiao et al., 2024)

Functions, classes,
algorithms, and
full programs

Multiple
languages

Chats between
developers and
ChatGPT

- - https://github.com/NAIST-SE/
DevGPT

3 OJI Dataset (Liu et al., 2023) Full programs,
functions, and
algorithms.

C++, Python
Code

Romanian Informatics
Olympiad (2002–2023)

Yes Yes -

4 HumanEval (Zhao et al.,
2024), (Aggarwal et al., 2024),
(Niu
et al., 2024) (Ouyang et al.,
2024), (Dong et al., 2024), (Li
et al., 2024a)

Functions Python Authors Yes Yes https://github.com/openai/
human-eval

5 Human-Eval – ET (Zhao
et al., 2024)

Functions Python Human-Eval with
additional test cases

Yes Yes

6 MBPP (Zhao et al., 2024),
(Niu
et al., 2024), (Dong et al.,
2024), (Li et al., 2024a)

Functions, classes,
programs

Python Coding platforms
and competitive
programming problems.

Yes Yes http://github.com/
google-research/google-research/
tree/master/mbpp/

7 MBPP-ET (Zhao et al., 2024),
(Dong et al., 2024)

Functions, classes,
programs

Python MBPP with additional
test cases

Yes Yes -

8 APPS (Yan, Gao and Liu,
2023), (Ouyang et al., 2024),
(Dong
et al., 2024)

Functions,
algorithms, and
complete programs

Python Programming platforms
and online coding
competitions

Yes Yes https://github.com/hendrycks/
apps

9 LLMC Dataset (Su et al.,
2023)

Functions, classes,
programs

Python LeetCode, Authors Yes Yes -

10 MBPP+ (Aggarwal
et al., 2024)

Functions, classes,
programs

Python Extended version of
MBPP

Yes Yes https://github.com/evalplus/
mbppplus_release

11 Bash dataset (Aggarwal
et al., 2024)

Bash scripts Bash scripts Authors Yes Yes -

12 CodeLMSec (Hajipour et al.,
2024)

functions, classes,
and algorithms

Python and C Generated using GPT-4
and Code Llama-34B

- - https://github.com/codelmsec/
codelmsec

13 CoderEval (Yu et al., 2024),
(Dong et al., 2024)

functions and
non-standalone
functions

Python and Java Open-source projects Yes Yes https://github.com/CoderEval/
CoderEval

14 ClassEval (Du et al., 2024) Classes with
multiple methods

Python Authors Yes Yes https://github.com/FudanSELab/
ClassEval

15 CodeXGLUE (Niu et al.,
2023)

functions, classes,
and programs

Java, C#,
Python, Ruby,
Go, C/C++,
JavaScript, PHP

open-source repositories
and coding platforms

Yes Yes https://github.com/microsoft/
CodeXGLUE

16 R Dataset (Miah and
Zhu, 2024)

Functions and
Algorithms

R R programming
textbooks

Yes Yes -

17 CodeNet (MacEdo
et al., 2024)

functions,
algorithms, and
programs

C, C++, Go,
Java, and Python

Open-source projects
and coding platforms

Yes Yes http://github.com/IBM/Project_
CodeNet/

18 T2C Dataset (Liu
et al., 2024a)

functions Java Part of the CodeXGlue
benchmark

- Yes https://github.com/BaoBaoGitHub/
guiding-chatgpt-for-code-generation

19 C2C Dataset (Liu
et al., 2024a)

functions C# and Java Part of the CodeXGlue
benchmark

- Yes https://github.com/BaoBaoGitHub/
guiding-chatgpt-for-code-generation

20 ManySStuBs4J (Jesse
et al., 2023)

Single-statements Java Open-source projects - Yes -

21 LeetCodeEval (Niu
et al., 2024)

functions C++ LeetCode Problems Yes Yes https://github.com/NougatCA/
EfficiencyEval

22 ScenEval (Paul, Zhu and
Bayley, 2024b)

functions,
algorithms, and
programs

Java textbooks, W3Resource,
and Stack Overflow

Yes Yes -

23 HDLEval (Kashanaki,
Zakharov and Renau, 2024)

code relevant to
hardware design

Verilog, Chisel,
pyRTL, and
DSLX.

HDLBits - Yes -

(Contd...)

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12159 93

TABLE VI
(Continued)

Name Code type Programming
language

Source of data Test cases Reference
solutions

Dataset link

24 VHDL-Eval (Vijayaraghavan
et al., 2024)

digital logic design
and hardware
description tasks

VHDL Verilog-Eval and VHDL
tutorials

Yes Yes -

25 VerilogEval (Liu et al., 2023) hardware design
tasks

Verilog HDLBits Yes Yes https://github.com/NVlabs/
verilog-eval

26 CopilotEvaluation (Moradi
Dakhel et al., 2023)

Sorting algorithms,
Data structures

Python Programming courses
and books

Yes Yes http://github.com/
Copilot-Eval-Replication-Package/
CopilotEvaluation/

27 Shellcode_IA32 dataset
(Cotroneo et al., 2024)

Assembly code
snippets

Assembly
Language
(IA-32)

Publicly Available
Security Exploits:

- Yes https://github.com/dessertlab/
Shellcode_IA32

28 IEEEXtreme (Koubaa et al.,
2023)

functions,
algorithms, and
programs

Python 3, Java 7,
and C++

IEEEXtreme
Competition

Yes Yes http://www.kaggle.com/datasets/
riotulab/chatgpt-evaluation-on
-ieeextreme-competitions/

VHDL: Very high speed integrated circuit hardware description language

(Contd...)

Table VII
LLMs Used in Code Generation Evaluation Studies

Model Published papers Total
ChatGPT – 3.5 (Yan, Gao and Liu, 2023), (Clark et al., 2024), (Black, Rimal and Vaidyan, 2024), (Aggarwal et al., 2024),

(Rai et al., 2024), (Du et al., 2024), (Al-Khafaji and Majeed, 2024), (Corso et al., 2024), (Guo, 2024),
(Paul, Zhu and Bayley, 2024b), (DeLorenzo, Gohil and Rajendran, 2024), (Kashanaki, Zakharov and
Renau, 2024), (Li et al., 2024b), (Khojah et al., 2024), (Cotroneo et al., 2024)

14

ChatGPT 4 (Petrovic, Konicanin and Suljovic, 2023), (Zhao et al., 2024), (Du et al., 2024), (Al-Khafaji and Majeed,
2024), (Dumitran, Badea and Muscalu, 2024), (Sakib, Khan and Karim, 2023), (Niu et al., 2024),
(DeLorenzo, Gohil and Rajendran, 2024), (Kashanaki, Zakharov and Renau, 2024), (Kashanaki, Zakharov
and Renau, 2024), (Miah and Zhu, 2024), (Gu et al., 2024), (Li et al., 2024b), (Liu et al., 2023), (Ouyang et
al., 2024), (Kou et al., 2024), (Dong et al., 2024), (Bucaioni et al., 2024)

15

ChatGPT (Version not mentioned) (Nikolaidis et al., 2024), (Su et al., 2023), (Jin et al., 2024), (Miah and Zhu, 2024), (Feng et al., 2023),
(Paul, Zhu and Bayley, 2024b), (Moratis et al., 2024), (Gu et al., 2024)

9

ChatGPT – 3.5 Turbo (Xu et al., 2023), (Yu et al., 2024), (Liu et al., 2024a), (Khoury et al., 2023), (Hamer, D’Amorim and
Williams, 2024), (Liu et al., 2024b), (Niu et al., 2024), (Kashanaki, Zakharov and Renau, 2024), (Liu et al.,
2023), (Ouyang et al., 2024), (Yang et al., 2024), (Gu et al., 2024), (Dong et al., 2024), (Li et al., 2024a)

12

CodeLlama-Python-7B (Zhao et al., 2024), (Dumitran, Badea and Muscalu, 2024), (Dumitran, Badea and Muscalu, 2024),
(MacEdo et al., 2024), (Niu et al., 2024), (Vijayaraghavan et al., 2024), (DeLorenzo, Gohil and Rajendran,
2024), (Yang et al., 2024), (Gu et al., 2024), (Dong et al., 2024)

10

Codellama 34B (Aggarwal et al., 2024), (Dumitran, Badea and Muscalu, 2024), (MacEdo et al., 2024), (Niu et al., 2024),
(Vijayaraghavan et al., 2024), (Dong et al., 2024)

6

Codellama-instruct-13b (Rizvi et al., 2024), (MacEdo et al., 2024), (Niu et al., 2024), (DeLorenzo, Gohil and Rajendran, 2024),
(Yang et al., 2024)

4

Starcoder (Aggarwal et al., 2024), (Du et al., 2024), (Dumitran, Badea and Muscalu, 2024) 3
WizardCoder 15B (Du et al., 2024), (MacEdo et al., 2024), (Niu et al., 2024) 3
Instruct-CodeGen 16B (Du et al., 2024), (Hamer, D’Amorim and Williams, 2024), (Kashanaki, Zakharov and Renau, 2024),

(Dong et al., 2024), (Jiang et al., 2024)
5

CodeGen (350M) (Yu et al., 2024), (Hamer, D’Amorim and Williams, 2024), (Kashanaki, Zakharov and Renau, 2024) 3
Gemini 1.0 (Black, Rimal and Vaidyan, 2024), (Al-Khafaji and Majeed, 2024), (Dumitran, Badea and Muscalu, 2024) 3
mistral-7b-instruct-2 (Rizvi et al., 2024), (Dumitran, Badea and Muscalu, 2024) 2
mixtral-8×7b-instruct (Rizvi et al., 2024), (MacEdo et al., 2024) 2
InCoder-6B (Zhao et al., 2024), (Du et al., 2024), (Dong et al., 2024), (Jiang et al., 2024) 4
InCoder-1.3B (Kou et al., 2024)
CodeParrot-1.5B (Kou et al., 2024)
CodeGeeX2-6B (Zhao et al., 2024), (Hamer, D’Amorim and Williams, 2024) 2
CodeGen2.5-7B (Zhao et al., 2024), (Vijayaraghavan et al., 2024), (Kou et al., 2024) 2
GitHub Copilot (Majdinasab et al., 2024), (Corso et al., 2024), (Moradi Dakhel et al., 2023) 2
PolyCoder 2.7B (Du et al., 2024), (Hamer, D’Amorim and Williams, 2024), (Kou et al., 2024), (Gu et al., 2024) 4
Codex (Hamer, D’Amorim and Williams, 2024), (Tony et al., 2023), (Dong et al., 2024), (Evtikhiev et al., 2023) 2
ChatGPT – 3.4 (Clark et al., 2024), (Black, Rimal and Vaidyan, 2024) 2
DeepSeek-6.7B (Zhao et al., 2024), (Dumitran, Badea and Muscalu, 2024), (Li et al., 2024a) 3
MagiCoder-6.7B (Zhao et al., 2024), (MacEdo et al., 2024) 2
Microsoft's Bing AI (Su et al., 2023) 1
iFLYTEC’s Spark (Su et al., 2023) 1

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

94 http://dx.doi.org/10.14500/aro.12159

TABLE VII
(Continued)

Model Published papers Total
Anthropic’s Claude (Su et al., 2023) 1
CodeT5+-Python-770M (Zhao et al., 2024), (Niu et al., 2023), (Gu et al., 2024), (Cotroneo et al., 2024) 4
DeepSeek Coder (33B Base, 33B Instruct) (Niu et al., 2024) 1
ChatDev (Zhao et al., 2024) 1
PanGu-Coder (300M) (Yu et al., 2024) 1
Codellama (Afsharmazayejani et al., 2024), (de-Fitero-Dominguez et al., 2024) 2
Mistral 7B (Aggarwal et al., 2024), (de-Fitero-Dominguez et al., 2024) 1
RoMistral 7B (Dumitran, Badea and Muscalu, 2024) 2
ChatGLM 6B (Du et al., 2024) 1
Vicuna 7B (Du et al., 2024) 1
CodeGeeX 13B (Du et al., 2024), (Dong et al., 2024), (Jiang et al., 2024) 3
Instruct-StarCoder 15B (Du et al., 2024), (Li et al., 2024b), (Gu et al., 2024), (Dong et al., 2024) 4
Copilot (Nikolaidis et al., 2024) 1
Codestral 22B (Dumitran, Badea and Muscalu, 2024) 1
AutoCoder 6.7B (Dumitran, Badea and Muscalu, 2024) 1
CodeQwen 1.5 7B (Dumitran, Badea and Muscalu, 2024) 1
Yi 9B (Dumitran, Badea and Muscalu, 2024) 1
Phi3 14B (Dumitran, Badea and Muscalu, 2024) 1
Tabnine (Corso et al., 2024) 1
Google Bard (Corso et al., 2024) 1
Phi-2 (Niu et al., 2024) 1
CodeGen2.5-QLoRa (Vijayaraghavan et al., 2024) 1
Granite-20B-Code-Instruct (Vijayaraghavan et al., 2024) 1
Granite-20B-Code-Instruct-ICL (Vijayaraghavan et al., 2024) 1
VeriGen (6B, 16B) (DeLorenzo, Gohil and Rajendran, 2024) 1
TransCoder (Yang et al., 2024) 1
AlphaCode (1.1B) (Dong et al., 2024)(Jiang et al., 2024) 2
CodeBERT (Cotroneo et al., 2024) 1

input context. They generate code autoregressively, token by
token, based on the preceding context and generated tokens
(Liu et al., 2024b). The GPTseries (GPT3/3.5/4), Codex,
and open-source models, such as CodeLlama, StarCoder,
and DeepSeek Coder fall into this category. These models
excel at generative tasks where the output flows sequentially
from a given prompt (like code completion or initial code
generation from a natural language description). In contrast,
encoder-decoder models (e.g., BART-derived CodeT5,
PLBART, AlphaCode) comprise two main parts: An encoder
and a decoder. The encoder processes the input (e.g., natural
language description), converting it into a fixed-length
representation (vector), and the decoder then generates the
output (e.g., code) based on this representation (Liu et al.,
2024a). This bidirectional encoding step can improve tasks
that need a holistic understanding of the input, such as code
summarization or translation between languages, but are less
commonly used for pure “generate from scratch” scenarios.

H. Code Analysis Tools used in Evaluations (RQ8)
The analysis identifies the code analysis tools utilized in

studies. Since manually verifying generated code is time-
consuming and expensive, automated tools, such as PyLint,
Flake8, and SonarQube are employed for static code analysis,
focusing on style, security, and maintainability. In addition,
dynamic evaluation tools, such as LeetCode Online Judgment
are used to evaluate the functionality and performance of
generated code using pre-defined test cases. CodeQL is

primarily used in many studies for its robust static analysis
capabilities for identifying vulnerabilities across different
programming languages, and its compatibility with various
analysis scenarios makes it a reliable tool for ensuring code
quality and security. Table VIII summarizes these tools and
their usage in evaluating generated code.

However, these tools have limitations. PyLint, although it’s
precision is generally high, generates false positives and often
ignores messages related to stylistic issues (e.g., whitespaces,
newlines, and invalid names) and import-related messages
(e.g., unused imports and missing imports) (Siddiq et al.,
2024). Flake8 prioritizes quantifiable style violations (e.g.,
whitespace, syntax) over qualitative aspects, such as code
readability (Yan, Gao and Liu, 2023). Although SonarQube
supports multiple languages and continuous integration, its
cognitive complexity metrics are restricted to Java, Python,
and JavaScript, and it lacks suitable queries for vulnerability
detection related to algorithm problems in Python and
JavaScript (Liu et al., 2024b). CodeQL, while powerful
for identifying security vulnerabilities and checking code
quality, vulnerability capabilities that are limited to specific
types, such as pointer and memory-related vulnerabilities in
algorithm problems for languages, such as C, C++, and Java,
and it may not have suitable queries for other languages,
such as Python (Liu et al., 2024b). The LeetCode Online
Judgment platform assesses runtime and memory utilization.
Still, it terminates execution upon the first test failure,
meaning the test case pass rates provided may serve as a

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12159 95

Table VIII
Studies Code Analysis Tools Used for Evaluating

LLM-Generated Code

Tool name Purpose Official link
1 CodeQL (Majdinasab

et al., 2024), (Hajipour et al.,
2024), (Hamer, D’Amorim
and Williams, 2024), (Liu
et al., 2024b), (Siddiq et al.,
2024)

Code vulnerability
analysis

https://codeql.
github.com/

2 Flake8 (Al-Khafaji and
Majeed, 2024), (Feng et al.,
2023)

Style guide
enforcement for
Python

https://flake8.
pycqa.org/

3 PyLint (Siddiq et al., 2024) Static code
analysis for Python

https://pylint.
pycqa.org/

4 Bandit (Siddiq et al., 2024) Security analysis
for Python

https://bandit.
readthedocs.io/

5 PMD (Moratis et al., 2024) Code quality and
style checker

https://pmd.
github.io/

6 CheckStyle (Guo, 2024) Style and
convention checker
for Java

https://
checkstyle.org/

7 LeetCode Online Judgment
(Liu et al., 2024b), (Bucaioni
et al., 2024)

Functional
correctness
evaluation

https://leetcode.
com/

8 SonarQube (Su et al., 2023) Code quality and
security

https://www.
sonarqube.org

lower bound rather than a complete assessment of potential
correctness beyond the first failure (Liu et al., 2024b).

I. Evaluation Challenges (RQ9)
Various challenges and issues arise when using LLMs

for code generation, especially in evaluating their ability to
generate accurate and efficient code. The main challenges are
listed below:
•	 Lack of standardized evaluation metrics: There are no

universally accepted metrics for assessing code generation.
Metrics, such as Pass@k and BLEU are used in many
evaluation studies, but they may not reflect the full quality,
correctness, or security of the generated code (Paul, Zhu and
Bayley, 2024a).

•	 Functional correctness versus syntactic similarity:
A particular issue is the balance between functional
correctness (i.e., does the code do what it was intended
to do?) and syntactic similarity (i.e., how closely does the
generated code resemble the reference solution?). While
functional correctness is more important, it is challenging
to assess automatically, particularly for complex tasks.
Syntactic similarity metrics, such as BLEU may not
accurately reflect the usability or correctness of the generated
code, which can lead to different findings and conclusions
(Paul, Zhu and Bayley, 2024b).

•	 Security and reliability concerns: LLMs can generate
code that contains security vulnerabilities identified in the
Common Weakness Enumeration (CWE). Evaluating the
security of generated code requires specialized tools, such
as CodeQL; still, they may produce false positives or miss
specific vulnerabilities. In addition, the security of generated
code can vary significantly depending on the prompt and the
model’s training (Majdinasab et al., 2024).

•	 Complexity and maintainability: Generated code may be
overly complex or challenging to maintain, even if it is
functionally correct. Metrics, such as cyclomatic complexity
and lines of code help in understanding the complexity of
the code, but they do not fully capture the readability or
maintainability of the code. Human evaluation is often
necessary to assess these aspects, which is costly, time-
consuming, and subjective (Clark et al., 2024).

•	 Benchmark limitations: Many benchmarks used to evaluate
LLMs are constructed from a single source or lack diversity,
which may introduce bias and affect the results. Datasets,
such as HumanEval and MBPP are widely used but do not
cover real-world programming tasks or applications. As a
result, the evaluation results are limited to certain situations.
(Paul, Zhu and Bayley, 2024a).

•	 Prompt sensitivity: The quality of the generated code can
vary significantly depending on the prompt given to the
LLM. Even slight modifications to a prompt can result in
significantly different outputs, making it challenging to craft
inputs that consistently elicit high-quality code from LLMs.
This sensitivity to prompts complicates the evaluation
process, as the results may depend more on the prompt
design than the model’s capabilities (Liu et al., 2024a).

•	 Token limitations and incomplete code: LLMs have token
limitations, which can lead to the generation of incomplete or
cut-off code snippets. This issue is highly prevalent for more
complex or larger coding tasks, as the code generated can be
incomplete and fail to meet the expected output. Incomplete
code is challenging to evaluate, as it may not be possible to
determine its correctness or functionality (Liu et al., 2024b).

•	 Cross-language evaluation: LLMs are often evaluated on
a single programming language (e.g., Python), but their
performance may differ for other languages and application
domains. Evaluating LLMs for cross-language code
generation (e.g., translating code from Python to Java)
introduces additional challenges, as each language has
syntax, semantics, and best practices. (Rai et al., 2024).

•	 Evaluation of multi-round fixing: In several cases, LLMs
need several prompts and rounds of fixing to get the desired
output in code generation. Evaluating the effectiveness
of these multi-prompt rounds is difficult since it means
monitoring the progression of the output code through
multiple iterations, and the final code could be influenced
by the quality of the user’s feedback and prompts (Liu
et al., 2024b).

•	 Model version and updates: The specific version of the model
used in evaluations can significantly impact the results.
For example, newer models, such as ChatGPT may have
improved capabilities, making comparing results across
different versions difficult (Majdinasab et al., 2024).

•	 Lack of hardware code evaluation: Many LLMs are primarily
evaluated on high-level programming languages (e.g.,
Python and Java) and lack evaluation frameworks for HDLs,
such as Verilog and VHDL. This limits their applicability in
hardware design and verification tasks, where specialized
knowledge and syntax are required (Afsharmazayejani
et al., 2024).

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

96 http://dx.doi.org/10.14500/aro.12159

•	 Efficiency and cost: Modern LLMs face significant
challenges related to efficiency and performance. Despite
advances in optimizing the inference process, they still
require expensive, high-performance GPUs to operate
effectively (Beurer-Kellner, Vechev and Fischer, 2023).
This limitation drives many researchers to rely on hosted
cloud-based models, where models with advanced features
are often accessible only through paid APIs, increasing
computational and financial costs.

J. Future Research Directions (RQ10)
Several possible directions for future research were

identified based on the analysis of selected studies. The
following points summarize these potential directions:
•	 Evaluation of non-determinism: Future research should

address the non-deterministic (i.e., the inconsistency in the
code candidates generated across different requests with
identical prompts) nature of LLMs by developing evaluation
frameworks that account for variability in generated
output. This includes exploring methods that can reduce
randomness, enhance consistency, and study the influence
of prompts on non-determinism.

•	 Development of comprehensive metrics: Future work should
develop metrics that capture not only functional correctness
but also code quality, security, efficiency, readability, and
maintainability. Such metrics should also be reliable and
aligned with human judgment, leading to better models and
more accurate performance evaluations.

•	 Evaluation of code summarization and documentation:
Future research should explore LLMs’ ability to generate
accurate and useful code summaries, comments,
and documentation. This includes evaluating the
readability, relevance, and completeness of generated
explanations.

•	 Development of specialized benchmarks: Future work
should focus on creating benchmarks for real-world coding
tasks, including complex dependencies, the use of external
libraries, and even project-specific contexts.

•	 Evaluation of code generation for real-time systems: Future
work should focus on LLMs’ ability to write code for real-
time systems, such as embedded and Internet of Things
systems. This includes checking the power, dependability,
and safety of the code output in real-time conditions.

•	 Multilingual code generation evaluation: Future research
should compare the performance of LLMs on code
generation from prompts in other languages (e.g., Arabic)
and explore these models’ multilingual capabilities.

•	 Security and correctness in code generation: Further studies
may consider the impact of different prompting strategies
and model selection on the security and correctness of
generated code. Furthermore, examine the balance between
program security and functionality.

•	 Quality and consistency of AI-generated code: Future
research should explore the quality and consistency of
ChatGPT-generated code across multiple metrics and
programming languages. Further studies should investigate
the real-world practicality of the code generated and how

many modifications the code will need before it can be
incorporated into projects.

•	 Evaluation of new models: New models should be evaluated
for their performance in specialized tasks, such as hardware
design (e.g., Verilog, VHDL), low-level programming (e.g.,
Assembly), and real-time systems (e.g., Arduino-based
applications).

•	 Prompt engineering techniques: Future work should
investigate manual and automated approaches to prompt
design for code generation. This includes evaluating
advanced techniques, such as chain-of-thought prompting,
few-shot examples, and template-based methods to enhance
code relevance and quality, as well as developing algorithms
that automatically generate, refine, and optimize prompts
based on feedback (e.g., execution success, style metrics,
or user preferences).

IV. Threat to Validity
Many factors may impact the results of surveys. Thus, to

prevent validity risks, the following steps were taken into
consideration for this paper:
•	 External validity: This is regarding the literature search; we

performed a broad literature search for this survey. Great
effort was made to cover well-known sources as the primary
databases to ensure good coverage and representation of
relevant studies.

•	 Construct validity: This is regarding the accuracy of data
extraction. Cited sources emphasize that the precision
of extracted data increases the precision of the expected
survey outcomes. Human error is always possible, so it
was reasonable to adopt a mixed approach. At first, data
were extracted manually and then cross-checked using an
LLM using manual prompts. For instance, after manually
extracting which programming language is used (RQ1),
the documents were prompted into a model asking,
“What programming language is used in this paper?” The
results were compared against manual extraction, and the
differences found were addressed, if any.

•	 Internal validity: This concerns study reproducibility, a key
aspect of research validity. To address this, steps include
strategies for search, inclusion criteria, and data extraction
processes, and the methodology used is explained in detail.
This transparency will facilitate other researchers repeating
the survey to authenticate and trust the findings from
servicing the survey.

V. Conclusion
The evaluation of LLMs in code generation is a rapidly
evolving field with significant potential to transform software
development. This survey has comprehensively analyzed
studies published between 2021 and 2024, addressing ten
key RQs related to evaluating LLMs in code generation.
The findings show that Python, Java, and C++ are the most
frequently used programming languages in these evaluations,
while metrics, such as Pass@k and BLEU are widely employed
to assess code quality. The programming scenarios in which

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12159 97

LLMs were applied are diverse, including code generation,
code refactoring, debugging, and even providing security
support. The efficiency of LLMs relies heavily on the quality
of prompt engineering, which remains a critical area for further
research. Furthermore, security remains a significant concern,
as generated code often contains vulnerabilities that require
scrutiny and analysis using tools, such as CodeQL. While it
is evident that various benchmarks are used in evaluations, the
lack of standardization poses challenges for comparing results
across different studies. The results achieved by ChatGPT are
positive but need to be supported by more comprehensive
evaluation frameworks that consider the full spectrum of code
quality, security, and maintainability.

We recommend future research directions to focus on
developing comprehensive metrics and benchmarks that
integrate specific aspects of human cognition and real-world
coding scenarios. Furthermore, addressing non-determinism
alongside cross-language evaluation and multi-round
code fixing is essential for the field’s growth. This survey
contributes to the present studies by highlighting present
practices, identifying existing gaps, and proposing future
research directions, aiming to improve the trustworthiness
and effectiveness of the code generated by LLMs.

References
Afsharmazayejani, R., Shahmiri, M.M., Link, P., Pearce, H., and Tan, B., 2024.
Toward Hardware Security Benchmarking of LLMs. In: 2024 IEEE LLM Aided
Design Workshop, LAD 2024. Institute of Electrical and Electronics Engineers Inc.

Aggarwal, P., Chatterjee, O., Dai, T., Mohapatra, P., Paulovicks, B., Blancett, B.,
and De Magalhaes, A., 2024. CodeSift: An LLM-Based Reference-Less
Framework for Automatic Code Validation. In: IEEE International Conference
on Cloud Computing, CLOUD. IEEE Computer Society, pp.404-410.

Al-Khafaji, N.J., and Majeed, B.K., 2024. Evaluating Large Language Models
using Arabic Prompts to Generate Python Codes. In: 4th International Conference
on Emerging Smart Technologies and Applications, eSmarTA 2024. Institute of
Electrical and Electronics Engineers Inc.

Beurer-Kellner, L., Vechev, M., and Fischer, M., 2023. Prompting is
programming: A query language for large language models. Proceedings of the
ACM on Programming Languages, 7, pp. 1946-1969.

Black, G.S., Rimal, B.P., and Vaidyan, V.M., 2024. Balancing Security and
Correctness in Code Generation: An Empirical Study on Commercial Large
Language Models. IEEE Transactions on Emerging Topics in Computational
Intelligence, pp.1-12.

Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Winter,
C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J.,
Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D., 2020.
Language models are few-shot learners. In: Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS ’20. Curran
Associates Inc., Red Hook, NY, USA.

Bucaioni, A., Ekedahl, H., Helander, V., and Nguyen, P.T., 2024. Programming
with ChatGPT: How far can we go? Machine Learning with Applications, 15,
p.100526.

Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K., Chen, H., Yi, X.,
Wang, C., Wang, Y., Ye, W., Yi Chang, Zhang, Y., Yu, P.S., Yang, Q., and Xie, X.,
2024. A survey on evaluation of large language models. ACM Transactions on
Intelligent Systems and Technology, 15(3), p.39.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.O., Kaplan, J., Edwards, H.,
Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M.,
Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N., Pavlov, M.,
Power, A., Kaiser, L., Bavarian, M., Winter, C., Tillet, P., Such, F.P.,
Cummings, D., Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W.H., Nichol, A., Paino, A., Tezak, N., Tang, J., Babuschkin, I., Balaji, S.,
Jain, S., Saunders, W., Hesse, C., Carr, A.N., Leike, J., Achiam, J., Misra, V.,
Morikawa, E., Radford, A., Knight, M., Brundage, M., Murati, M., Mayer, K.,
Welinder, P., McGrew, B., Amodei, D., McCandlish, S., Sutskever, I., and
Zaremba, W., 2021. Evaluating Large Language Models Trained on Code.
Available from: https://arxiv.org/abs/2107.03374 [Last accessed on 2024 Dec 27].

Chowdhury, M.N.U.R., and Haque, A., 2023. ChatGPT: Its Applications and
Limitations. In: 2023 3rd International Conference on Intelligent Technologies,
CONIT 2023. Institute of Electrical and Electronics Engineers Inc.

Clark, A., Igbokwe, D., Ross, S., and Zibran, M.F., 2024. A Quantitative
Analysis of Quality and Consistency in AI-generated Code. In:
Proceedings - 2024 7th International Conference on Software and System
Engineering, ICoSSE 2024. Institute of Electrical and Electronics Engineers
Inc., pp.37-41.

Corso, V., Mariani, L., Micucci, D., and Riganelli, O., 2024. Generating Java
Methods: An Empirical Assessment of Four AI-Based Code Assistants. In:
IEEE International Conference on Program Comprehension. IEEE Computer
Society, pp.13-23.

Cotroneo, D., Foggia, A., Improta, C., Liguori, P., and Natella, R., 2024.
Automating the correctness assessment of AI-generated code for security
contexts. Journal of Systems and Software, 216, p.112113.

De-Fitero-Dominguez, D., Garcia-Lopez, E., Garcia-Cabot, A., and Martinez-
Herraiz, J.J., 2024. Enhanced automated code vulnerability repair using large
language models. Engineering Applications of Artificial Intelligence, 138, p.109291.

DeLorenzo, M., Gohil, V., and Rajendran, J., 2024. CreativEval: Evaluating
creativity of LLM-based hardware code generation. Proceedings of the 2024
IEEE LLM Aided Design Workshop (LAD), San Jose, CA, USA, pp.1-5.

Dong, Y., Jiang, X., Jin, Z., and Li, G., 2024. Self-collaboration Code Generation via
ChatGPT. ACM Transactions on Software Engineering and Methodology, 33, p.189.

Du, X., Liu, M., Wang, K., Wang, H., Liu, J., Chen, Y., Feng, J., Sha, C., Peng, X.,
and Lou, Y., 2024. Evaluating Large Language Models in Class-Level Code
Generation. In: Proceedings - International Conference on Software Engineering.
IEEE Computer Society, pp.982-994.

Dumitran, A.M., Badea, A.C., and Muscalu, S.G., 2024. Evaluating the
Performance of Large Language Models in Competitive Programming: A Multi-
Year, Multi-Grade Analysis. In: 18th International Conference on INnovations in
Intelligent SysTems and Applications, INISTA 2024. Institute of Electrical and
Electronics Engineers Inc.

Evtikhiev, M., Bogomolov, E., Sokolov, Y., and Bryksin, T., 2023. Out of the
BLEU: How should we assess quality of the code generation models? Journal
of Systems and Software, 203, p.111741.

Fan, A., Gokkaya, B., Harman, M., Lyubarskiy, M., Sengupta, S., Yoo, S., and
Zhang, J.M., 2023. Large Language Models for Software Engineering: Survey
and Open Problems. In: Proceedings - 2023 IEEE/ACM International Conference
on Software Engineering: Future of Software Engineering, ICSE-FoSE 2023.
Institute of Electrical and Electronics Engineers Inc., pp.31-53.

Feng, Y., Vanam, S., Cherukupally, M., Zheng, W., Qiu, M., and Chen, H., 2023.
Investigating Code Generation Performance of ChatGPT with Crowdsourcing
Social Data. In: Proceedings - International Computer Software and Applications
Conference. IEEE Computer Society, pp.876-885.

Geng, M., Wang, S., Dong, D., Wang, H., Cao, S., Zhang, K., and Jin, Z., 2023.
Interpretation-based Code Summarization. In: IEEE International Conference
on Program Comprehension. IEEE Computer Society, pp.113-124.

Gu, X., Chen, M., Lin, Y., Hu, Y., Zhang, H., Wan, C., Wei, Z., Xu, Y., and
Wang, J., 2024. On the effectiveness of large language models in domain-
specific code generation. ACM Transactions on Software Engineering and

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

98 http://dx.doi.org/10.14500/aro.12159

Methodology, 34, p.78.

Guo, M., 2024. Java Web Programming with ChatGPT. In: 2024 5th International
Conference on Mechatronics Technology and Intelligent Manufacturing,
ICMTIM 2024. Institute of Electrical and Electronics Engineers Inc., pp.834-838.

Hajipour, H., Hassler, K., Holz, T., Schonherr, L., and Fritz, M., 2024.
CodeLMSec benchmark: Systematically evaluating and finding security
vulnerabilities in black-box code language models. In: Proceedings - IEEE
Conference on Safe and Trustworthy Machine Learning, SaTML 2024. Institute
of Electrical and Electronics Engineers Inc., pp.684-709.

Hamer, S., D’Amorim, M., and Williams, L., 2024. Just another copy and
paste? Comparing the security vulnerabilities of ChatGPT generated code and
StackOverflow answers. In: Proceedings - 45th IEEE Symposium on Security
and Privacy Workshops, SPW 2024. Institute of Electrical and Electronics
Engineers Inc., pp.87-94.

Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo, X., Lo, D., Grundy, J.,
and Wang, H., 2024. Large language models for software engineering:
A systematic literature review. ACM Transactions on Software Engineering and
Methodology, 33(8), p.1-79.

Jesse, K., Ahmed, T., Devanbu, P.T., and Morgan, E., 2023. Large Language
Models and Simple, Stupid Bugs. In: Proceedings - 2023 IEEE/ACM
20th International Conference on Mining Software Repositories, MSR 2023.
Institute of Electrical and Electronics Engineers Inc., pp.563-575.

Jiang, X., Dong, Y., Wang, L., Zheng, F., Shang, Q., Li, G., Jin, Z., and Jiao, W.,
2024. Self-planning code generation with large language models. ACM
Transactions on Software Engineering and Methodology, 33, p.182.

Jin, K., Wang, C.Y., Pham, H.V., and Hemmati, H., 2024. Can ChatGPT Support
Developers? An Empirical Evaluation of Large Language Models for Code
Generation. In: Proceedings - 2024 IEEE/ACM 21st International Conference on
Mining Software Repositories, MSR 2024. Institute of Electrical and Electronics
Engineers Inc., pp.167-171.

Kalyan, K.S., 2024. A survey of GPT-3 family large language models including
ChatGPT and GPT-4. Natural Language Processing Journal, 6, p.100048.

Kashanaki, F.R., Zakharov, M., and Renau, J., 2024. HDLEval Benchmarking
LLMs for Multiple HDLs. In: 2024 IEEE LLM Aided Design Workshop, LAD
2024. Institute of Electrical and Electronics Engineers Inc.

Khojah, R., Mohamad, M., Leitner, P., and De Oliveira Neto, F.G., 2024. Beyond
Code Generation: An Observational Study of ChatGPT Usage in Software
Engineering Practice. Proceedings of the ACM on Software Engineering, 1(FSE),
pp.1819-1840.

Khoury, R., Avila, A.R., Brunelle, J., and Camara, B.M., 2023. How Secure is
Code Generated by ChatGPT? In: Conference Proceedings - IEEE International
Conference on Systems, Man and Cybernetics. Institute of Electrical and
Electronics Engineers Inc., pp.2445-2451.

Kou, B., Chen, S., Wang, Z., Ma, L., and Zhang, T., 2024. Do large language
models pay similar attention like human programmers when generating code?
Proceedings of the ACM on Software Engineering, 1, pp.2261-2284.

Koubaa, A., Qureshi, B., Ammar, A., Khan, Z., Boulila, W., and Ghouti, L., 2023.
Humans are still better than ChatGPT: Case of the IEEEXtreme competition.
Heliyon, 9(11), p.e21624.

Li, J., Li, G., Li, Y., and Jin, Z., 2024a. Structured chain-of-thought prompting for
code generation. ACM Transactions on Software Engineering and Methodology,
34, p.34.

Li, J., Zhang, Y., Karas, Z., Mcmillan, C., Leach, K., and Huang, Y., 2024b. Do
Machines and Humans Focus on Similar Code? Exploring Explainability of Large
Language Models in Code Summarization. In: IEEE International Conference
on Program Comprehension. IEEE Computer Society, pp.47-51.

Liu, C., Bao, X., Zhang, H., Zhang, N., Hu, H., Zhang, X., and Yan, M.,
2024a. Guiding ChatGPT for Better Code Generation: An Empirical Study.
In: Proceedings - 2024 IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2024. Institute of Electrical and Electronics

Engineers Inc., pp.102-113.

Liu, M., Pinckney, N., Khailany, B., and Ren, H., 2023. Invited Paper:
VerilogEval: Evaluating Large Language Models for Verilog Code Generation.
In: IEEE/ACM International Conference on Computer-Aided Design, Digest of
Technical Papers, ICCAD. Institute of Electrical and Electronics Engineers Inc.

Liu, Z., Tang, Y., Luo, X., Zhou, Y., and Zhang, L.F., 2024b. No need to lift a
finger anymore? Assessing the quality of code generation by ChatGPT. IEEE
Transactions on Software Engineering, 50(6), pp.1548-1584.

López Espejel, J., Yahaya Alassan, M.S., Chouham, E.M., Dahhane, W., and
Ettifouri, E.H., 2023. A comprehensive review of state-of-the-art methods for
Java code generation from natural language text. Natural Language Processing
Journal, 3, p.100013.

Lu, Y., Sun, C., Yan, Y., Zhu, H., Song, D., Peng, Q., Yu, L., Wang, X., Jiang, J.,
and Ye, X., 2024. A Comprehensive Survey of Datasets for Large Language Model
Evaluation. In: 2024 5th Information Communication Technologies Conference,
ICTC 2024. Institute of Electrical and Electronics Engineers Inc., pp.330-336.

MacEdo, M., Tian, Y., Cogo, F., and Adams, B., 2024. Exploring the Impact
of the Output Format on the Evaluation of Large Language Models for Code
Translation. In: Proceedings - 2024 IEEE/ACM 1st International Conference on
AI Foundation Models and Software Engineering, FORGE 2024. Association
for Computing Machinery, Inc., pp.57-68.

Majdinasab, V., Bishop, M.J., Rasheed, S., Moradidakhel, A., Tahir, A., and
Khomh, F., 2024. Assessing the Security of GitHub Copilot’s Generated
Code-A Targeted Replication Study. In: Proceedings - 2024 IEEE International
Conference on Software Analysis, Evolution and Reengineering, SANER 2024.
Institute of Electrical and Electronics Engineers Inc., pp.435-444.

Mendes, W., Souza, S., and De Souza, C.R.B., 2024. “You’re on a Bicycle with
a Little Motor”: Benefits and Challenges of using AI Code Assistants. In: 2024
IEEE/ACM 17th International Conference on Cooperative and Human Aspects
of Software Engineering (CHASE), pp.144-152.

Miah, T., and Zhu, H., 2024. User Centric Evaluation of Code Generation Tools
(Invited Paper). In: 2024 IEEE International Conference on Artificial Intelligence
Testing (AITest), pp.109-119.

Moradi Dakhel, A., Majdinasab, V., Nikanjam, A., Khomh, F., Desmarais, M.C.,
and Jiang, Z.M.J., 2023. GitHub copilot AI pair programmer: Asset or liability?
Journal of Systems and Software, 203(C), p.111734.

Moratis, K., Diamantopoulos, T., Nastos, D.N., and Symeonidis, A., 2024.
Write me this Code: An Analysis of ChatGPT Quality for Producing Source
Code. In: Proceedings - 2024 IEEE/ACM 21st International Conference on
Mining Software Repositories, MSR 2024. Institute of Electrical and Electronics
Engineers Inc., pp.147-151.

Nazir, A., and Wang, Z., 2023. A comprehensive survey of ChatGPT: Advancements,
applications, prospects, and challenges. Meta-Radiology, 1, p.100022.

Nikolaidis, N., Flamos, K., Gulati, K., Feitosa, D., Ampatzoglou, A., and
Chatzigeorgiou, A., 2024. A Comparison of the Effectiveness of ChatGPT and
Co-Pilot for Generating Quality Python Code Solutions. In: Proceedings - 2024
IEEE International Conference on Software Analysis, Evolution and
Reengineering - Companion, SANER-C 2024. Institute of Electrical and
Electronics Engineers Inc., pp.93-101.

Niu, C., Li, C., Ng, V., Chen, D., Ge, J., and Luo, B., 2023. An Empirical Comparison
of Pre-Trained Models of Source Code. In: Proceedings - International
Conference on Software Engineering. IEEE Computer Society, pp.2136-2148.

Niu, C., Zhang, T., Li, C., Luo, B., and Ng, V., 2024. On Evaluating the Efficiency
of Source Code Generated by LLMs. In: Proceedings - 2024 IEEE/ACM
1st International Conference on AI Foundation Models and Software Engineering,
FORGE 2024. Association for Computing Machinery, Inc., pp.103-107.

Ouyang, S., Zhang, J.M., Harman, M., and Wang, M., 2024. An empirical study
of the non-determinism of ChatGPT in code generation. ACM Transactions on
Software Engineering and Methodology, 34, p.42.

Paul, D.G., Zhu, H., and Bayley, I., 2024a. Benchmarks and Metrics for

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12159 99

Evaluations of Code Generation: A Critical Review. In: 2024 IEEE International
Conference on Artificial Intelligence Testing (AITest). IEEE, pp.87-94.

Paul, D.G., Zhu, H., and Bayley, I., 2024b. ScenEval: A benchmark for scenario-
based evaluation of code generation. In: 2024 IEEE International Conference
on Artificial Intelligence Testing (AITest). IEEE, pp.55-63.

Petersen, K., Vakkalanka, S., and Kuzniarz, L., 2015. Guidelines for conducting
systematic mapping studies in software engineering: An update. Information and
Software Technology, 64, pp.1-18.

Petrovic, N., Konicanin, S., and Suljovic, S., 2023. ChatGPT in IoT Systems:
Arduino Case Studies. In: 2023 IEEE 33rd International Conference on
Microelectronics, MIEL 2023. Institute of Electrical and Electronics Engineers Inc.

Rai, L., Khatiwada, S., Deng, C., and Liu, F., 2024. Cross-Language Code
Development with Generative AI: A Source-to-Source Translation Perspective.
In: 2024 IEEE 7th International Conference on Electronic Information and
Communication Technology, ICEICT 2024. Institute of Electrical and Electronics
Engineers Inc., pp.562-565.

Rizvi, A., Simon, N., Tocho, J., Yongaci, A., Abi-Karam, S., and Hao, C., 2024.
Evaluating Large Language Models for High-Level Synthesis. In: 2024 IEEE
Opportunity Research Scholars Symposium (ORSS), pp.49-52.

Sakib, F.A., Khan, S.H., and Karim, A.H.M.R., 2023. Extending the Frontier of
ChatGPT: Code Generation and Debugging. George Mason University, Virginia.

Sharma, T., Kechagia, M., Georgiou, S., Tiwari, R., Vats, I., Moazen, H., and
Sarro, F., 2024. A survey on machine learning techniques applied to source code.
Journal of Systems and Software, 209, p.111934.

Siddiq, M.L., Roney, L., Zhang, J., and Santos, J.C.S., 2024. Quality
Assessment of ChatGPT Generated Code and their Use by Developers. In:
Proceedings - 2024 IEEE/ACM 21st International Conference on Mining
Software Repositories, MSR 2024. Institute of Electrical and Electronics
Engineers Inc., pp.152-156.

Su, H., Ai, J., Yu, D., and Zhang, H., 2023. An Evaluation Method for Large Language
Models’ Code Generation Capability. In: Proceedings - 2023 10th International
Conference on Dependable Systems and Their Applications, DSA 2023. Institute
of Electrical and Electronics Engineers Inc., pp.831-838.

Tony, C., Mutas, M., Ferreyra, N.E.D., and Scandariato, R., 2023. LLMSecEval:
A Dataset of Natural Language Prompts for Security Evaluations. In: Proceedings - 2023
IEEE/ACM 20th International Conference on Mining Software Repositories, MSR
2023. Institute of Electrical and Electronics Engineers Inc., pp.588-592.

Vijayaraghavan, P., Shi, L., Ambrogio, S., Mackin, C., Nitsure, A., Beymer, D.,
and Degan, E., 2024. VHDL-Eval: A Framework for Evaluating Large Language

Models in VHDL Code Generation. In: 2024 IEEE LLM Aided Design Workshop
(LAD). IEEE, pp.1-6.

Wan, Y., Bi, Z., He, Y., Zhang, J., Zhang, H., Sui, Y., Xu, G., Jin, H., and Yu, P.,
2024. Deep learning for code intelligence: Survey, benchmark and toolkit. ACM
Computing Surveys, 56, p.309.

Wang, J., and Chen, Y., 2023. A Review on Code Generation with LLMs:
Application and Evaluation. In: Proceedings - 2023 1st IEEE International
Conference on Medical Artificial Intelligence, MedAI 2023. Institute of Electrical
and Electronics Engineers Inc., pp.284-289.

Wang, W., Ning, H., Zhang, G., Liu, L., and Wang, Y., 2024. Rocks coding, not
development: A human-centric, experimental evaluation of LLM-supported SE
tasks. Proceedings of the ACM on Software Engineering, 1, pp.699-721.

Xiao, T., Treude, C., Hata, H., and Matsumoto, K., 2024. DevGPT: Studying
Developer-ChatGPT Conversations. In: Proceedings of the 21st International
Conference on Mining Software Repositories, MSR ’24. Association for
Computing Machinery, New York, NY, USA, pp.227-230.

Xu, B., Nguyen, T.D., Le-Cong, T., Hoang, T., Liu, J., Kim, K., Gong, C., Niu, C.,
Wang, C., Le, B., and Lo, D., 2023. Are We Ready to Embrace Generative AI
for Software Q and A? In: Proceedings - 2023 38th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2023. Institute of Electrical
and Electronics Engineers Inc., pp.1713-1717.

Yan, D., Gao, Z., and Liu, Z., 2023. A Closer Look at Different Difficulty Levels
Code Generation Abilities of ChatGPT. In: Proceedings - 2023 38th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2023.
Institute of Electrical and Electronics Engineers Inc., pp.1887-1898.

Yang, Z., Liu, F., Yu, Z., Keung, J.W., Li, J., Liu, S., Hong, Y., Ma, X., Jin, Z.,
and Li, G., 2024. Exploring and Unleashing the Power of Large Language
Models in Automated Code Translation. Proceedings of the ACM on Software
Engineering, 1(FSE), pp.1585-1608.

Yao, Y., Duan, J., Xu, K., Cai, Y., Sun, Z., and Zhang, Y., 2024. A survey on
large language model (LLM) security and privacy: The good, the bad, and the
ugly. High-Confidence Computing, 4, p.100211.

Yu, H., Shen, B., Ran, D., Zhang, J., Zhang, Q., Ma, Y., Liang, G., Li, Y., Wang, Q.,
and Xie, T., 2024. CoderEval: A Benchmark of Pragmatic Code Generation with
Generative Pretrained Models. In: 2024 IEEE/ACM 46th International Conference
on Software Engineering (ICSE). IEEE Computer Society, Los Alamitos, CA,
USA, pp.428-439.

Zhao, Z., Sun, J., Cai, C.H., and Wei, Z., 2024. Code Generation Using Self-
Interactive Assistant. Institute of Electrical and Electronics Engineers (IEEE),
United States, pp.2347-2352.

