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Abstract—Lung cancer remains a prevalent health burden and 
is one of the leading causes of cancer mortality worldwide. Its high 
mortality rate is partly attributable to histological heterogeneity 
and the difficulty of detecting it at early stages. An accurate 
distinction of lung cancer subtypes in histopathological images is 
crucial for improving the accuracy of diagnosis and planning an 
appropriate treatment to improve the quality of life of patients. 
This study proposes a hybrid deep-learning model for classifying 
cancer types using histopathology images. The ConvNeXt-Tiny is 
an extension of the ResNet-50 base architecture. This architecture 
is inspired by both models and introduces self-attention layers to 
improve both feature extraction and classification performance, 
leading to a unique model design. The proposed model and two 
other deep learning models were trained and tested using the 
public Lung and Colon Cancer Histopathological Image (LC25000) 
dataset and a private clinical dataset, and their effectiveness was 
evaluated. The proposed model outperformed the best classification 
accuracy among the other architectures (98.73% public and 93.17% 
private), outperforming baseline models, such as ConvNeXt-Tiny 
(96.27% public and 89.33% private) and ResNet-50 (94.00% public 
and 87.67% private). The results  confirm the robustness and 
generalization ability of the proposed architecture.

Index Terms—Deep learning, Histopathology images, 
Lung cancer classification, Model evaluation, Primary 
lung cancer.

I. Introduction
Lung cancer continues to possess one of the highest ranks 
of cancer-related deaths in the world, and histopathological 
study is still considered the gold standard of diagnosis 
(Siegel, Giaquinto and Jemal, 2024). Primary lung cancer 

is divided based on cell type. Non-small cell lung cancer 
(NSCLC) is the first kind, which can be further subtyped into 
squamous cell carcinoma (SCC), large cell carcinoma (LCC), 
and adenocarcinoma (ADC). The second type is small-cell 
lung cancer (SCLC) (Howlader, et al., 2020). The purpose 
of our analysis was to identify distinguishing features for 
primary lung cancers. Histopathology remains important 
in the accurate diagnosis of these cancers, making it an 
essential tool for categorizing tumors by cellular morphology 
and architecture on examination of lung tissue under a 
microscope (Nicholson, et al., 2022).

While being the most dependable form of diagnosis, it is 
also an arduous and subjective manual histological evaluation 
process. For the same sample, a second review by a 
pathologist might lead to ambiguous conclusions, particularly 
in the case of complex or borderline samples. The procedure 
itself is time-consuming and liable to human mistakes 
(Komura and Ishikawa, 2018). These limitations have created 
an urgent need for technological solutions to improve the 
consistency and efficiency of pathological assessment.

Convolutional neural networks (CNN) have played a 
transformative role in histopathological image classification 
(Hua, Li, and Wang, 2024). Architectures, such as ResNet 
have been widely adopted due to their residual learning 
design, which facilitates the training of deeper networks 
and enhances feature extraction from complex tissue 
structures. ResNet-based models have demonstrated strong 
performance in classification and patch-level analysis tasks. 
However, CNNs, such as ResNet are fundamentally limited 
by their localized receptive fields, which restrict their ability 
to capture long-range spatial dependencies – an essential 
capability when interpreting heterogeneous histopathological 
slides (Kanavos and Mylonas, 2023).

ConvNext-Tiny was one of the models proposed to 
combine a backbone CNN model while leveraging the 
architectural design, parameter optimization, and training 
strategy of vision transformers, such as Swin-T. The 
ConvNext-Tiny model has outperformed most state-of-the-
art CNN and transformer-based models in various computer 
vision tasks and can be easily scaled up. The ConvNeXt-
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Tiny uses ResNet-50 as the baseline and optimizes its 
architecture and training strategy using Swin-T transformers 
(Liu, et al., 2022). Despite adopting the architecture and 
parameter optimization strategies of vision transformers, 
ConvNext-Tiny fails to incorporate and leverage one of the 
core components of the transformer architecture, which is the 
self-attention mechanism. This study aims to break through 
these constraints by developing a hybrid deep-learning model 
for classifying lung cancer in histopathological images.

The proposed model is designed to draw on selected ideas 
from ResNet50 and ConvNext-Tiny and introduce self-
attention. The self-attention mechanism offers an effective 
and better cross-channel feature correlation that is useful for 
the overall improvement of feature extraction. The model’s 
generalizability was assessed using two separate datasets. 
Results are compared with two baseline architectures to 
substantiate the model’s performance in classifying between 
different lung cancer categories. This paper’s remainder 
is structured as follows. The second section presents the 
literature review. The third section outlines the methodology 
adopted in this study. The fourth section reports and briefly 
discusses the results. The final section presents the study’s 
conclusion.

II. Literature Review
To explore the classification of lung cancer using 

histopathology images and deep learning, we reviewed 
relevant studies from reputable journals. The literature is 
synthesized in two complementary forms: Key studies are 
discussed in paragraph format to outline the deep learning 

models, datasets, and classification outcomes, while 
Table I summarizes additional works by architecture, data 
source, and performance.

Understanding the present situation, identifying research 
gaps, and guiding the development of our suggested model 
are the goals of this review. Wei, et al. (2019) proposed a 
ResNet-based model for classifying five lung ADC subtypes 
from whole-slide histopathology images, achieving a kappa 
score of 0.525 and 66.6% agreement with pathologists, 
surpassing the inter-pathologist rate of 62.7%.

Ahmed, et al. (2021) applied transfer learning using 
Inception-V3 and VGG-16 on the Kimia Path24 dataset, 
which covers 24 tissue types, reporting accuracies of 80% and 
77%, respectively. Yang, et al. (2021) utilized EfficientNet-B5 
for multiclass classification across the SYSUFH, SZPH, and 
TCGA datasets, achieving a precision of up to 99%, recall of 
up to 100%, and accuracy ranging from 86% to 89%.

Mehmood, et al. (2022) utilized a modified AlexNet on 
LC25000 with 227 × 227 inputs, achieving an accuracy of 
98.8%. Ijaz, et al. (2023) combined features from ResNet-50 
and EfficientNet-B0 with the Grey Wolf Optimization 
algorithm, achieving 98.73% accuracy through soft voting. 
Tummala, et al. (2023) applied EfficientNetV2 with an input 
resolution of 224 × 224, achieving 99.97% accuracy.

El-Ghany, et al. (2023) fine-tuned ResNet-101 on 
LC25000, achieving 99.94% accuracy with precision, recall, 
and F1-score around 99.84%Tortora, et al. (2023) developed 
a multimodal framework integrating CT, histopathology, and 
clinical data to predict NSCLC survival, achieving an AUC 
of 0.909 using handcrafted features and Random Forest. 
Gowthamy and Ramesh (2024) introduced a two-stage 

TABLE I
Summary of Existing Methods for Lung Cancer Classification

Study Input image size Dataset Pre‑trained (Yes/No) Methodology Accuracy (%)
Hatuwal and Thapa (2020) 180×180 LC25000 No Custom CNN 97.20
Masud, et al. (2021) 64×64 LC25000 Not specified Custom CNN 96.33
Kumar, et al. (2022) 224×224 LC25000 Yes (ImageNet) DenseNet121 and RF 98.60
Hattori, et al. (2023) 800×800 WSI. No Switching Discriminator 90.9
Rajasekar, et al. (2023) 224×224 histopathology image Yes (ImageNet) CNN

CNN GD
VGG‑16
Inception V3
VGG‑19
ResNet‑50

93.64
97.86
96.52
93.54
92.17
93.47

Anjum, et al. (2023) 224×224
240×240
260×260
300×300
380×380
456×456
512×512
600×600

LC25000 Yes (ImageNet) EfficientNetB0
EfficientNetB1
EfficientNetB2
EfficientNetB3
EfficientNetB4
EfficientNetB5
EfficientNetB6 
EfficientNetB7

95.87
96.26
97.24
95.63
96.83
94.31
93.76
95.59

Sumon, et al. (2024) 224×224 LC25000 Yes (ImageNet) Deep learning+SVM 
approach for classification

96.6

Gong, et al. (2025) 224×224 739 Diff‑Quik–stained 
cytology samples 
(6 classes)

Yes (ImageNet) ResNet‑18 (enhanced) 84.05 (AI only) 
90.52–93.83 (AI+experts)

Kriegsmann, et al. (2020) 299×299 Quality‑controlled 
histopathology patches

Yes (ImageNet) InceptionV3 95 

Devi, et al. (2024) 300×300 LC25000 No Simple CNN 85
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ensemble that combines multiple CNNs with Electric Eel 
Optimization; achieving 98.96% accuracy on LC25000 
using weighted averaging. Table I presents additional studies 
relevant to the classification of lung cancer.

While existing studies using public datasets, such as 
LC25000, have shown promising results, they often lack 
clinical diversity, do not encompass all primary lung cancer 
subtypes, and rely on artificial augmentation. Moreover, no 
prior research has focused on histopathological lung cancer 
classification using clinical data from the Kurdistan region. 
To address these limitations, this study introduces a hybrid 
deep-learning model developed to improve classification 
performance on both public and private clinical datasets.

III. Materials and Methods
The development of the lung cancer classification 

model is outlined in this section. Both public and private 
clinical image datasets are utilized in the study. Two 
baseline architectures were also introduced for performance 
comparison in addition to the proposed model. Models were 
assessed using the standard metrics, i.e., accuracy, precision, 
recall, and F1-score.

A. Dataset
The present work is based on two sets of data: Public and 

private clinical data. The public dataset was directly used for 
training and testing models, while the private dataset was 
clinically collected and pre-processed for model building.
Public dataset

The proposed lung cancer classification model and the 
baseline models were developed and tested based on the 
LC25000. A  total of 25,000 histopathological images of five 
lung and colon tissue classes are included. Three classes of 
lungs were selected for our study: ADC, SCC, and normal 
tissue (NT). There are 5000 color images per class, generated 
by augmenting a set of 250 original images with rotation, 
zoom, and contrast modifications. The dataset is publicly 
accessible on Kaggle and is widely used in computer-aided 
diagnosis research (Borkowski, et al., 2019). Fig.  1 shows 
example images in the dataset.
Private dataset

This research collected a custom histopathology image 
dataset from biopsies obtained at PAR Hospital in Erbil, 
Kurdistan Region, Iraq. The dataset includes four lung cancer 
subtypes: ADC, SCC, LCC, and SCLC. The private dataset 
focuses on primary lung cancer types, excluding normal lung 
tissue, as the study aimed to address the more challenging 
task of distinguishing between different primary lung cancer 

subtypes. The histological slides were hand-stained by the 
pathology laboratory staff at the hospital using standard 
hematoxylin and eosin staining protocols. The images 
were captured at ×40 magnification using a standard light 
microscope. Data were collected with hospital permission 
and ethical approval to use anonymized patient samples. The 
approval letter has been submitted as a supplementary file for 
editorial review.

The original images (2992 × 2992 pixels) were resized 
to a standard resolution of 712 × 712 pixels to keep fine 
morphological details. These patches were then resized to the 
network input size for model training. No stain normalization 
or noise removal was applied to the histopathology images 
to maintain the original tissue appearance and ensure that 
inherent morphological features were preserved for accurate 
analysis, as detailed in Table II and stored in JPG format 
for compatibility with deep learning frameworks. Fig.  2 
presents representative examples from each of the lung 
cancer subtypes. To ensure balanced class representation and 
reduce bias during model training, 1500 image patches were 
selected per class.

The data were split into three parts: A  training set 
(70%), a validation set (20%), and a testing set (10%). 
Data augmentation, including flipping, rotation, zooming, 
brightness adjustment, and color jittering, was applied only 
to the training set to enhance generalization and simulate 
histological variability.

B. Proposed Model
The proposed architecture draws inspiration from the 

residual structure of ResNet-50 and the ConvNext-Tiny block 
design (Liu, et al., 2022), using their strengths in a standalone 
model. We revisited the popular ResNet-50 and made vital 
modifications to the original architecture. One of the most 
visible additions in our proposal is the inclusion of three 
self-attention layers between the network’s second and fourth 
stages as depicted in Fig.  3. The proposed model integrates 
a self-attention mechanism within the CNN pipeline, where 
the input features are processed. At this point, features 
are forwarded through two parallel branches. One branch 
performs bottleneck-like convolutional blocks to capture 
local spatial information. At the same time, the other takes 
a self-attention mechanism to capture global dependencies. 
The two branches are concatenated together and supplied 
to the rest of the CNN layers. Thereafter, a global average 
pooling layer is applied to aggregate spatial information into 
a compact representation, which is then forwarded to a fully 
connected layer within the classification head.

The purpose of these layers is to utilize the cross-stage 
and cross-channel to learn correlated features for a better 

Fig. 1. Sample histopathology images from the LC25000 dataset: (a) Adenocarcinoma, (b) Squamous cell carcinoma, and (c) Normal lung tissue.
cba
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TABLE II
Summary of Private Dataset

Cancer type No. of 
patients

No. of 
slides

Average slide per 
patient

Average images per 
slide 

Average patches 
per image

Total 
patches

Total patches used for 
each class

Adenocarcinoma 38 50 2 5 7 1750 1500
Squamous cell carcinoma 35 48 2 5 7 1680 1500
Large cell carcinoma 25 43 2 5 7 1505 1500
Small cell carcinoma 31 47 2 5 7 1645 1500

representation of the input feature map. As a departure from 
the ResNet-50, self-attention enables neural networks to 
dynamically highlight semantically important regions in an 
image while reducing the influence of irrelevant information 
(Khan, et al., 2022). It projects the input feature map into Query, 
Key, and Value vectors to compute attention scores using scaled 
dot-product attention, followed by softmax normalization as 
shown in Equations 1-4 (Raschka, Mirjalili and Raschka, 2022).

Q = XWQ, K = XWK, V = XWKV� (1)

 
T

k

QK
Score

d
=

� (2)

A = softmax (Score)� (3)

Output = A.V� (4)

Here, X, denotes the input feature map; WQ, WK and WV 
are learnable weight matrices used to project the input into 
the query (Q), key (K), and value (V), representations; dk, 
is the dimensionality of the key vectors, used as a scaling 
factor in the attention score computation; and A represents 
the attention weight matrix that determines the contribution 

of each value vector V to the final output. As shown in 
Fig.  4, the diagram provides a detailed illustration of the 
self-attention mechanism.

The stage ratio of the proposed model has been arranged 
in a 1:1:3:1 compute ratio for efficient computation and 
performance improvement, as opposed to the stage compute 
ratio of ResNet-50, which is (3, 4, 6, 3). For each stage, the 
convolution process is repeated in a number of 3, 3, 9, and 
3 before taking the global averaging of the overall feature. 
Moreover, the larger filter sizes of 5, 7, 9, and 11 are used in 
the stages instead of the fixed 3 × 3 size used in the original 
ResNet-50. This choice was made to capture both fine-grained 
cellular details and larger tissue structures, enabling the network 
to learn multiscale features important for histopathology image 
classification. This choice is also inspired by the ConvNet-
Tiny and Swin-T transformer architecture.

Another micro-design change is the activation function 
and its frequency of use in ResNet-50 instead of ReLU, 
the GELU activation function is used, providing a 
smoother output that helps improve the flow of gradients 
during training and results in improved performance in 
terms of final accuracy on the validation set, as seen from 

Input Feature Map Linear Projections

Query-Q

Key-K

MatMul Scaled Dot Product SoftMax Attention Weights

Value-V

OutputMatMul 

Fig. 3. Schematic diagram of the self-attention mechanism.

Fig. 2. Sample histopathology images from the private clinical dataset: (a) Adenocarcinoma, (b) Squamous cell carcinoma, (c) Large cell carcinoma, 
and (d) Small cell lung cancer.

b

c d

a
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the higher validation accuracy achieved in comparative 
experiments. We preserve the batch normalization of the 

original architecture rather than the layer normalization 
proposed in ConNext-Tiny. A  detailed summary of 
the training parameters and techniques is provided in 
Table III. The hyperparameters were rigorously optimized 
through systematic grid search and evaluation on the 
validation set to ensure stable training and maximize 
model performance. These settings were selected based on 
their consistent improvement in validation metrics across 
multiple experiments. The proposed model and both the 
baseline models were implemented using Python with 
the TensorFlow library. Training was carried out for 200 
epochs on an Intel i9  (3.4GHz) CPU system along with an 
NVIDIA RTX 4090 GPU. To make sure we are making a 
fair comparison, all models were evaluated under the same 
experimental conditions.

IV. Results and Discussion
This section evaluates the proposed model against two 

baselines, ConvNext-Tiny and ResNet-50, on the LC25000 
dataset and private datasets. It includes training curve 
analysis for the proposed model, confusion matrices for all 
models, separate performance tables, and a comparative 
discussion of results

A. Training and Validation Performance
Training and validation performance plots of the proposed 

model on the public and private datasets are illustrated 
in Figs.  5 and 6, respectively. One can observe stable 
convergence for 200 epochs in both figures, accompanied 
by a consistent reduction in loss and an improvement in 
validation accuracy. Training is smooth in the public dataset, 
and although the private one has slight fluctuations, it tends 
to stabilize. The downward trend of the loss demonstrates 
effective learning and limited overfitting. Superior accuracy 
was obtained on the LC25000 dataset, which was augmented 
before splitting. On the other hand, the training dataset of the 
private was first split, and augmentation was performed on 
the training data only. Validation and testing were conducted 
in the same manner as those without augmentation, which 
also contributed to its greater variability and made it more 
clinically realistic, albeit more challenging.

B. Confusion Matrix
To evaluate classification performance, Figs. 7 and 8 present 

the confusion matrices of the proposed model, ConvNext-

TABLE III
Training Hyperparameters

Image size 224×224
Optimizer AdamW
Learning Rate 5e‑5
Weight decay 0.05
Optimizer momentum β1=0.9, β2=0.999
Batch size 64
Training epoch 200
Learning Rate schedule Cosine decay
Random erasing 0.2Fig. 4. Architecture of the proposed deep learning model.
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Tiny, and ResNet-50 on the public and private datasets. 
The proposed model demonstrated superior performance, 
distinguishing ADC from SCC. Overall, accuracy was higher 
on the LC25000 dataset, which includes benign tissue that is 

easier to classify and less likely to be misclassified. In contrast, 
the private dataset, containing only cancer pathological cases, 
posed greater challenges and offered a more clinically realistic 
evaluation of generalizability.

Fig. 6. The accuracy and loss curve of the proposed model on the private dataset.

Fig. 5. The accuracy and loss curve of the proposed model on the LC25000 dataset.

Fig. 8. Confusion matrices on the private test set. (a) Proposed Mode,(b) ConvNext-Tiny, (c) ResNet-50.

Fig. 7. Confusion matrices on the LC25000 test set: (a) Proposed model, (b) ConvNext-Tiny, and (c) ResNet-50.
a b c

a b c
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TABLE IV
Results Summary of Proposed Model

Dataset type Training accuracy (%) Validation accuracy (%) Test accuracy (%) Precision (%) Recall (%) F1‑score (%)
LC 25,000 99.13 98.51 98.73 98.74 98.73 98.73
Private 97.45 95.53 93.17 93.19 93.17 93.16

TABLE VI
Results Summary of Resnet‑50

Dataset type Training accuracy (%) Validation accuracy (%) Test accuracy (%) Precision (%) Recall (%) F1‑score (%)
LC 25,000 98.34 95.21 94.00 94.03 94.00 94.01
Private 93.91 89.88 87.67 87.91 87.67 87.73

TABLE V
Results Summary of Convnext‑Tiny

Dataset type Training accuracy (%) Validation accuracy (%) Test accuracy (%) Precision (%) Recall (%) F1‑score (%)
LC 25,000 98.92 96.98 96.27 96.29 96.27 96.27
Private 94.96 91.48 89.33 89.47 89.33 89.38

C. Quantitative Evaluation and Discussion
Among the three evaluated models, the proposed model 

demonstrated the highest classification accuracy, achieving 
98.73% on the LC25000 dataset and 93.17% on the private 
clinical dataset. While all models performed better on the 
public dataset, the lower performance on the private dataset 
reflects the complexity of clinically representative, non-
augmented data before partitioning. An extended overview 
of performance metrics through training, validation, and 
testing steps is discussed in Tables IV-VI. ConvNext-Tiny 
produced the second-highest results, followed by ResNet-50. 
The suggested model performed better than both of them 
consistently in precision, recall, and F1-score, and was 
more robust and generalizable, validating its robustness 
and generalizability ability in diverse data settings. These 
findings suggest its potential to assist histopathologists in 
future clinical applications and contribute meaningfully to 
the early and accurate classification of lung cancer.

D. Limitations and Future Work
This study utilized a patch-based dataset. While this 

approach was practical for computational scaling and reduced 
training times, the results were still based on a patch-based 
dataset, not suitable for real-world diagnostic purposes. By 
using semi-uniform cropped image patches from a relatively 
homogeneous dataset, the classification was straightforward, 
completely ignoring the complexity and variability of whole-
slide histopathology images. Thus, the model might become 
trained to recognize particular aspects of training data, and its 
accuracy under these controlled conditions may not entirely 
represent its performance in wider and less-structured clinical 
scenarios.

This high level of classification accuracy is in agreement 
with previous studies using the same standard patch-
based experimental design, which supports the fact that the 
proposed model is reliable under this methodology. However, 
this also suggests that the strong performance is mainly 
attributable to the controlled and simplified nature of the task, 

and may not directly translate to more challenging, clinically 
realistic settings. Underscoring the need for further validation 
on whole-slide or heterogeneous datasets.

Furthermore, the LC25000 dataset includes augmented 
images, which, while helpful in increasing dataset size, may 
inadvertently introduce data leakage between training and 
testing splits. Future work should therefore prioritize the 
development and rigorous evaluation of models on whole-
slide images to ensure greater generalizability and clinical 
relevance.

V. Conclusion
This study developed deep-learning model for lung cancer 
classification inspired by the architectural strengths of 
ConvNext-Tiny and Restnet-50 while also incorporating self-
attention layers to enhance its learning capabilities. Rather 
than integrating these models, they were used as baseline 
references to inform the design of the proposed architecture, 
which enables the model to capture both local and global 
contextual dependencies among pixels, thereby improving 
feature representation and classification. Public and private 
datasets are used for training and testing models.

The suggested architect reached higher accuracy than 
baselines, ConvNext-Tiny and ResNet-50, on both public 
and private datasets. The results would enable the model to 
classify lung cancer in an early and accurate manner, and 
such an interesting research direction could be thoroughly 
investigated in future studies of computer-aided pathology.
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