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Abstract—Sign language assists in building communication 
and bridging gaps in understanding. Automatic sign language 
recognition (ASLR) is a field that has recently been studied for 
various sign languages. However, Kurdish sign language (KuSL) 
is relatively new and therefore researches and designed datasets on 
it are limited. This paper has proposed a model to translate KuSL 
into text and has designed a dataset using Kinect V2 sensor. The 
computation complexity of feature extraction and classification 
steps, which are serious problems for ASLR, has been investigated 
in this paper. The paper proposed a feature engineering approach 
on the skeleton position alone to provide a better representation of 
the features and avoid the use of all of the image information. In 
addition, the paper proposed model makes use of recurrent neural 
networks (RNNs)-based models. Training RNNs is inherently 
difficult, and consequently, motivates to investigate alternatives. 
Besides the trainable long short-term memory (LSTM), this study 
has proposed the untrained low complexity echo system network 
(ESN) classifier. The accuracy of both LSTM and ESN indicates they 
can outperform those in state-of-the-art studies. In addition, ESN 
which has not been proposed thus far for ASLT exhibits comparable 
accuracy to the LSTM with a significantly lower training time.

Index Terms—Deep learning, Echo system network, Long 
short-term memory, Microsoft Kinect v2 Sensor, Recurrent neural 
network, Sign language.

I. Introduction
In 2020, the World Health Organization (WHO) reported 
that approximately 466 million people in the world have 
hearing loss, of whom 34 million are children (World Health 
Organization, 2020). Those people who lack the ability to 
listen and\or speak with ordinary people may not be able to 
understand them. Sign language has therefore become a vital 
element of human communication. There are now various 

available sign languages such as American, British, Chinese, 
Russian, Indian, Persian, and Arabic Sign Language.

Kurdish sign language (KuSL) has been developed only 
recently. There are three different dialects in Kurdistan for the 
sign languages studied in deaf private schools in Kurdistan region. 
KuSL originated in a school for deaf students in Sulaymaniyah 
in 1982. Students from all Kurdish schools catering for the deaf 
are able to clearly understand each other using KuSL. In 2015, 
more than 1000 students attended classes of the deaf schools. 
The total number of deaf people in Iraqi Kurdistan is estimated 
to be in excess of 10,000 (Wikipedia, 2019,).

Automatic sign language recognition (ASLR) recognition 
exploits the physical (dynamic) movement of the hands, 
face, fingers, or entire body to translate the signs into text or 
speech. ASLR is a field that has been studied for various sign 
languages (Almasre and Al-Nuaim, 2016, Maass et al., 2002, 
Mahmood et al., 2018). However, few research studies have 
been conducted on the KuSL because it is new (Abdul et al., 
2020, Hashim and Alizadeh, 2018, Mahmood et al., 2018).

In this study, we designed a model to translate KuSL into 
text. There are three main problems that this paper tries to 
investigate, one of which related to the KuSL itself, where no 
comprehensive dataset is available with an adequate number 
of samples. The other two problems related to ASLR are the 
complexity of the feature extraction step and the high cost of 
the training stage in the classification level, which negatively 
influence the ASLT systems’ adaptability. Consequently, 
the questions under investigation in this paper are: (1) How 
to decrease the time complexity in the feature extraction 
step, without accuracy degrading of ASLR model? (2) How 
to design a high-performance model that avoid the time 
complexity resulted in training the large number of parameters?

In this study, Kinect sensor V2 was used to record videos of 
seven expert persons expressing 84 different signs (alphabets, 
digits and words) each with five trials. The features that fed 
the model were extracted from the videos as a time series 
representation of only the skeleton points captured by Kinect 
sensor V2. We have avoided extracting features from the 
color version of the images to reduce the complexity and 
proposed a feature engineering applied to the Skelton points 
instead, to generate more representations of these features. 
The study has also proposed two recurrent neural network 
(RNN)-based models: Long short-term memory (LSTM) and 
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echo system network (ESN). The LSTM, (where weights are 
learned) are proposed in the literature for ASLR (Liu et al., 
2016) and has recorded high performance, however, with a 
long computation time and complexity. Consequently, we 
proposed the use of an ESN which has not been used for 
ASLR so far and uses non-trained weights; therefore, it has a 
significantly lower time complexity than LSTM; however, we 
shall see it can achieve comparable accuracy to the LSTM.

The remainder of the paper is structured as follows: 
Section 2 presents a review of the literature while section 
3 explains the background to the study. The adopted 
methodology is presented in section 4, following which the 
results are presented and discussed in section 5. Finally, the 
conclusion to the paper is presented in section 6.

II. Literature Review
In recent years, various studies have been conducted 

on different sign languages, such as Persian sign language 
(Karami et al., 2011), American sign language (Truong et al., 
2016), Brazilian sign language (BSL) (Dos Santos Anjo et al., 
2012), and British sign language (Liwicki and Everingham, 
2009, Capilla, 2012).

Sign language recognition is much more challenging where 
the number of classes (signs) is high. Studies in the literature 
mainly used a limited number of classes (Table I). For KuSL, 
and to our best knowledge, the only two available studies 
have used 12 (Hashim and Alizadeh, 2018) and 10 signs 
(Mahmood et al., 2018). In this study, and to increase the 
validity of the proposed ASLR for KuSL, we have designed a 
dataset that contains 84 signs including digits, alphabets and 
words. In addition, we have conducted our proposed model 
on the Chinese Sign Language dataset (Liu et al., 2016), with 
100 classes for further validation step.

The nature of the application whether it deals with static 
(represented in one image) or with dynamic (represented in 
a sequence of images) language signs, in one side and/or with 
discrete versus continuous input in the other side, controls 
the method of data collection, feature extraction, and the 
classification. Static signs can be easily represented in a global 
feature, because it has not a time series nature, for example: 
(Karami et al., 2011) investigated the recognition of static 
gestures for the Persian alphabet expressed in sign language. 
Overall, 32 alphabet static signs were recorded using a digital 
camera and a multilayer perceptron NN (MLP_NN) classifier 
was utilized to train the proposed model. The study achieved an 
accuracy of 94%. In another study of BSL, (Dos Santos Anjo 
et al., 2012) explored the recognition of static gestures in BSL 
using depth information extracted by Kinect Xbox 360. The 
authors worked on ten alphabets and applied image segmentation 
and classification using an artificial NN (ANN). The accuracy of 
these models was 75.4% for MLP and 67.47% for segmentation.

Regarding the dynamic signs, features should be extracted 
from each time step, since global features for time series-
based signals may lead to lose information of sequences. 
Therefore, Capilla, 2012, proposed the use of dynamic time 
warping and utilized Kinect Xbox to translate 14 sign words 

and achieved an accuracy of 95.2%. In the other side, Truong 
et al., 2016, proposed the translation of American sign 
language for alphabetical text and speech using both static 
and dynamic inputs. ASL alphabets consist of 26 letters, 24 
of which are represented statically and 2 signs (“J” and “Z”) 
are represented dynamically, therefore requiring gestures to 
be expressed. The authors used Logitech webcam to collect 
data and adopted two types of classification: Adaboost and 
Haar_Like classifiers, and they achieved accuracy of 98%.

There are three types of sign language features: Hand 
motion, hand position, and hand shape, and these have been 

Table I
Summary of the datasets used in the literature.

Ref. No. of 
Sign

No. of 
subjects

No. of 
Samples

Method accuracy 
%

(Hashim and 
Alizadeh, 2018)

12 - Enhancement and 
Segmentation

67

(Mahmood et al., 
2018)

10 10 200 MLP 98

(Karami et al., 
2011)

32 - 640 MLP 94

(Truong et al., 
2016)

26 28000 
and 11100

Adaboost, 
Haar_Like classifier

98

(Dos Santos 
Anjo et al., 2012) 

10 400 MLP, Virtual Wall 
and Libras specific

75

(Liwicki and 
Everingham, 
2009)

100 1000 Robust, Bootstrap 
and HMM

(Capilla, 2012) 14 70 Nearest group and 
DTW

95.2

(Lang et al., 
2012)

25 HMM and 
Dragonfly NITE

97

(Preeti Amatya 
and Gerrit 
Meixner, 2018)

11 DTW and VGB 65

(Chai et al., 
2013)

239 1195 Kinect v2 83.5

 (Kumar et al., 
2018)

30 10 2700 HMM and SVM 83.7

(Almasre and 
Al-Nuaim, 2016)

28 4 224 Supervised 
learning-

-

(Li, 2012) 9 4 3600 K-Mean and 
Graham Scan

91

(El-Bendary  
et al., 2010)

15 15 MLP and MD 91.3

(Mittal et al., 
2019)

35 6 3150 CNN 89.5

(Liu et al., 2016) 100
500

50
50

25,000
125,000

RNN and LSTM 86

(Lee et al., 2021) 26 100 2600 LSTM and 
k-Nearest-Neighbor

91.8

(Rastgoo et al., 
2020)

100
45
36

10
25

10,000
100 K
81,000

Single shot 
detector, 2D 
Convolutional NN, 
3D Convolutional 
NN, and LSTM

91

(Li et al., 2020) 2000 100 34,404 Holistic visual 
appearance based 
approach, and 2D 
human pose-based 
approach

62.6

(Gao et al., 2021) 100 50 25,000 H2SNet 0.91
(Katılmış and 
Karakuzu, 2021)

50 4 8000 ML-KELM 98

MLP: Multilayer perceptron, LSTM: Long short-term memory
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adapted to translate Japanese sign language (Awata et al., 
2017, Lee et al., 2016). We have adopted in this study the 
use of the skeleton position alone to reduce the complexity 
of feature extraction step.

Feature for time series sign language may suffer from 
the poor representation and\or high dimensionality and lead 
to increase of the classification complexity. For example, a 
dataset was designed using 80 Chinese sign language words 
and Kinect v2 was employed to exploit the RGB image, 
depth map, and position of the skeleton joints (Li et al., 
2017). In ddition, Li et al., 2020, proposed a new large-
scale word-level American sign language video dataset, and 
used two holistic visual appearance based approach, and 2D 
human pose-based approach models. The utilized dataset was 
collected from YouTube and contain more than 2000 words 
performed by 100 signers. The study achieves an accuracy 
of 62.63%.

In Li et al., 2021, authors present a multiscale fully 
convolutional NN (MFCN) based method, and extracted 
the detailed features of the ground object using multiscale 
convolution kernels. Resolving the findings of change 
detection (CD) can also be harmed by an imbalance of 
positive and negative samples. And then model has been 
trained by unbalanced samples. Hence, using digital globe 
dataset, the suggested technique was compared to six state-
of-the-art CD methods. Finally, their research shows that 
the achieved accuracy for proposed method is higher than 
state of the art methods. In (Hossein and Ejaz, 2020), 
authors proposed a deep convolutional NNs to learn on 
images of Bengali sign language. Dataset has been collected 
by snapshot from video using webcam and then applied 
computer vision-based method. The dataset includes ten set 
of images and used 31 different signs and the total number 
of images are 310 Bangladesh image signs. The research 
achieved an accuracy of 99.8%.

To avoid using the full image-based feature recent 
studies utilized some devices as a feature extractor. In 2011, 
Microsoft produced a new device to record video and capture 
images called the Kinect v2 sensor, which provides RGB, 
Depth sensor, and 3D Skeleton (Chai et al., 2013). (Almasre 
and Al-Nuaim, 2016) used depth sensors in Kinect with 
HMM to recognize gestures and achieved an accuracy of 
83.7%. In another study (Kumar et al., 2018), adopt depth 
sensor data to recognize hand gestures. Lang et al., 2012, and 
Preeti Amatya and Gerrit Meixner, 2018, propose a dynamic 
translation of hand gestures to text, where the data has been 
collected using Kinect v2 and SDK2.0 software. And most 
recently, leap motion device has been used on a system that 
is tested with 942 signed sentences using 35 different sign 
words of Indian Sign Language. The average accuracy of 
72.3% and 89.5% has been achieved on signed sentences 
and isolated sign words, respectively, (Mittal et al., 2019). 
Kratimenos et al., 2021, employed a SMPL-X model (an 
extension from the Skinned Multi-Person Linear Model) to 
enable and extract features from hand, body and face in one 
RGB image and used to SLR.

Effective and up-to-date classifier for time series inputs are 
the RNN-based models. For example, an LSTM- based model 

is proposed in several projects (for example, Li et al., 2017; 
Liu et al., 2016) using leap motion sensors and color images 
in Kinect v2. In addition, Li et al. (2017) propose specific 
hand shape as a descriptor for hand shape, and achieve better 
sign recognition results, when applied to a proposed encoder-
decoder LSTM model. Lee et al., 2021, provides a prototype 
for an ASL learning application. They applied two methods 
which are LSTM and k-Nearest-Neighbor for 26 ASL 
alphabets expressed by 100 subjects each with 100 trails, and 
they achieved an accuracy of 91.8%. A novel deep learning-
based pipeline architecture is proposed by (Rastgoo et al., 
2020) for efficient automatic hand sign language recognition 
from RGB input videos, based on the single shot detector, 
2D convolutional NN, 3D convolutional NN, and LSTM, 
and dataset has been containing 10,000 RGB video from 100 
Persian sign words. The achieved accuracy is 90% and 91.1% 
for RKS-Persian dataset and NYU dataset respectively.

However, training of LSTM as an RNN-based model 
is reported to be inherently difficult (Lukoševičius, 2012). 
As a consequent, in this paper, we have proposed ESN 
architecture as a new powerful approach in RNN research, 
where, instead of difficult learning process, it based on the 
property of untrained randomly initialized RNN (Čerňanský 
and Tiňo, 2007). We shall see in section 5 that the ESN can 
significantly reduce the training time and achieve results 
comparable to the LSTM.

Finally, and regarding the ASLR applied to KuSL, two 
studies have been conducted using image processing tools. 
First, Hashim and Alizadeh, 2018, developed an algorithm 
using a grid-based gesture descriptor on the hand gesture 
image for 12 Kurdish letters, produced following image 
enhancement and segmentation steps. The achieved accuracy 
of the proposed model was 67%. In the second study by 
Mahmood et al., 2018, ten words were expressed by ten 
people using KuSL. The classifier used was ANN_MLP and 
the dataset consisted of 200 images extracted from frames 16 
and 30 only. The model accuracy was reported to be 98%.

Table I summarizes the datasets of some of the papers 
produced in sign language.

III. Background
A. Feature Extraction
In computer vision, feature extraction is utilized to 

capture “important” information on the selected body joints 
or the detection of hand gestures using image processing 
tools (Gilorkar and Ingle, 2014). Features can be extracted 
in different ways such as hand segmentation using canny 
edge detection (Prasad et al., 2016), scale-invariant feature 
transform (Pandita and Narote, 2013), Haar wavelets, Haar-
like features (Chen et al., 2008), Fourier descriptors, and 
using Microsoft Kinect Sensor V1 and V2 (Almasre and Al-
Nuaim, 2016, Awata et al., 2017, Capilla, 2012, Chai et al., 
2013, Kumar et al., 2018, Lang et al., 2012, Preeti Amatya 
and Gerrit Meixner, 2018, Verma et al., 2013).

In this work, we used Microsoft Kinect sensor V2 to 
extract 25 joints from the body (Fig. 1). The sensor computes 
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the joint position values (x, y, and z). In the current study, 
we extracted 15 joints representing the upper part of the 
body where most relevant information to the sign language is 
available. The extracted joints were six joints for each hand 
(Shoulder, Elbow, Wrist, Hand, Hand Tip, and Thumb) along 
with the Neck, Head, and Spine Shoulder joints. In addition, 
a feature engineering approach was adopted that involved 
determining the slope of each feature along the time steps 
denoted in this work as a delta feature (DF).

B. LSTM
The problem of gradient vanishing in RNN means 

alternative models is required. The LSTM is one of the 
proposed models that aim to improve the RNN. The network 
structure of the LSTM is complicated. The main improvement 
LSTM offers over RNN is its ability to capture long-term 
dependencies (Prabakaran and Shyamala, 2019). Therefore, 
LSTM adopts a structure that can overcome the problem of 
gradient vanishing. The LSTM is one of the deep learning 
classifiers that deal with time-series data such as video, voice, 
and vibration (Abdul et al., 2020). It takes account of the 
diversity of the multidimensional feature values at each time 
step. There are four parts in each repeating module: cell state 
(c), input gate (i), forget gate (f), and output gate (o) (Fig. 2).

The cell value computation at the current time ct is 
represented in equation 1:
 c f c i gt t t t t  1  (1)

Where ft is the forget gate at time t, ct-1 is the state of the 
previous cell, ⊙ refers to an element wise multiplication, it is 

the input gate at time t, and gt is computed using equation 4. 
The function of the cell state is to remember a value during 
the recurrent connection.

The following equation demonstrates how to compute, ft, 
it, and gt:
 f W x R h bt g f t f t f    1  (2)

 i W x R h bt g i t i t i    1  (3)

 g W x R h bt c g t g t g    1  (4)

Where σg and σg are gate activation functions, W is the 
input weight, R represents the recurrent weight, and b is the 
bias of each component. It is also important to note that the 
hidden state is updated using equation (5):

Fig. 1. Skeleton joints captured by Kinect sensor V2.

Fig. 2. The structure of the long short-term memory cell.



 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10827 5

 h o ct t g t    (5)

Where:
 o W x R h bt g o t o t o    1 �  (6)

crucial step in the learning process of the model consists 
of remembering and then forgetting the values. The updated 
inputs remember values in the memory whereas the 
forgetting gates skip the remembered input when it is no 
longer important. The output gate determines when the cell 
state produces the output value. The output of the final steps 
during the computation at each gate and cell state forms the 
input of the later steps. This enables the LSTM model to 
learn how to maintain its memory as a function of previous 
values (Jena et al., 2014).

C. Echo State Network (ESN)
ESN provide a supervised learning architecture for 

RNNs. It adopts a random and non-trained RNN with the 
input signal, thereby inducing in each neuron within this 
“reservoir” network a nonlinear response signal, additionally, 
it combines a desired output signal by a trainable linear 
combination of all of these response signals.

RNN is traditionally represented by the equation:

 h t f x t h t enc       , ;1   (7)

Where h(t) and h(t-1) are the current and previous states, 
respectively, x(t) is the input, f(t). Is the non-linear activation 
function, and θenc denotes the trainable encoding parameters. 
Equation (7) can be rewritten as:

 h t tanh W x t W h tin r       1  (8)

Thus:

 { },enc in rW Wθ =  (9)

Where the matrices Win and Wr are the weights of the input 
and recurrent connections, respectively. The collection of 
all states, h, is represented H= [h(1), h(2),…(h(T)], where 
T is the number of time steps in the sample x. To make 
this representation suitable for different classifiers, one 
representation of H can be adopted, denoted here as r(H). 
A possible representation r is equal to h(T).

To perform the classification step, a function g(.) takes the 
output of the representation as an input and then maps the 
representation to one of the categories.

  y g rX dec  ; �  (10)

Where θdec denotes all trainable parameters in the classifier.
The traditional RNN trains all the parameters θenc and 

θdec. To avoid the high computational complexity of back-
propagating through time, the reservoir computing approach 
generates the θenc weights randomly.

However, this may result in a lack of adaptability. To 
resolve this problem, a large recurrent layer can be used to 
make the reservoir generate a rich pool of diverse dynamics 
to model various tasks.

The reservoir capability of generalization can be improved 
through the processing units in the recurrent layer, the 
sparsity of the recurrent connections, and the spectral radius 
of the connection weights matrix Wr, which is set to bring the 
system close to stability (Bianchi et al., 2016).

The main hyper parameters that control the behavior of the 
reservoir are the spectral radius; the percentage of non-zero 
connections; the number of hidden units R; and the scaling ω 
of the values in Win (Livi et al., 2017).

IV. Method and Materials
A. Datasets
One of the contributions of this work is to design a 

specific dataset for KuSL. Here, we focused on skeleton 
data extracted using Kinect sensor and collected metadata 
from the camera. The Kinect sensor v2 has two sensors for 
RGB-color video recording with a resolution of 1920 × 1080 
pixels, the depth sensor records video at a resolution of 512 
× 424 pixels (Wasenmüller and Stricker, 2016) and 3D types 
detect 25 joints of the body, with each joint represented in 
three dimensions, x, y, and z (also known as Skeleton values). 
This work uses the skeleton-based features. We selected 
15 features, when for each one a two-dimensional position 
is provided. The whole dataset consists of 2940 samples, 
including 84 classes (35 alphabetic, 39 words, and 10 
numbers [0–9]) (Table II). In this dataset, seven professional 

Table II
Class label for each of Kurdish (alphabetic, words, and numbers)

Label class Label class Label class
1 ئ 13 ها 25 ق
2 ە 14 ح 26 ر
3 ع 15 ج 27 ڕ
4 ا 16 ک 28 س
5 ب 17 خ 29 ش
6 چ 18 ل 30 ت
7 د 19 لا 31 ڤ
8 ی 20 ڵ 32 و
9 ێ 21 م 33 وو
10 ف 22 ن 34 ز
11 گ 23 ۆ 35 ژ
12 غ 24 پ
36 بەلێ 50 گران بەها 64 سارد
37 ببورە 51 هەرزان 65 سەرچاو
38 بەیارمەتیت 52 هەینی 66 سێ شەم
39 بەرامبەر 53 جوان 67 شەممە
40 بەیانی 54 کات 68 سڵاو
41 چاکەت 55 کورت 69 سپی
42 چاڵاک 56 لە تەنیشت 70 سوور
43 چۆنی 57 من 71 خواحافیز
44 چوارشەم 58 ناوت چیە 72 یەک شەم
45 دەزانم 59 نەخێر 73 زانا
46 درێژ 60 نازانم 74 زیرەک
47 دووشەم 61 نێوان
48 ئێمە 62 پێنج شەم
49 گەرم 63 رۆژئاوابوون
75 سفر 79 چوار 82 حەوت
76 یەک 80 پێنج 83 هەشت
77 دوو 81 شەش 84 نۆ
78 سێ
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subjects were involved to express the signs and to record 
the videos, where their skeleton data has been captured. 
Each subject has repeated the same sign 5 times. Hence, for 
each class (7×5=35) samples are collected, whereas the total 
number of samples is 7×5×84=2940 samples.

Kurdish letters can be expressed in both dynamic and 
static ways. However, most of the letters are static (with no 
movement), just two of them are dynamic, such as (ئ  ,(وو، 
Fig. 3. However, there are many dynamic signs in the 
adopted dataset in this work.

B. Feature Engineering (Delta)
Feature engineering can be applied when new features 

need to be produced from those available. One of the features 
adopted in this work was the delta of the joint positions 
along the time steps. The delta representation of a feature 
is the difference between the value of a feature in the next 
time step and the value of the same feature in the current 
time step. In this project, 15 joints were used, which were 
represented in two dimensions (x, y). Completing all of these 
computations resulted in 30 DFs, with a reduced o1-time 
step. To reduce the resolution and hence the computation of 
the samples, the time steps with odd indexes were included 
in the delta computation.

C. Scale Normalization
Recording videos for each participant using Kinect V2 led 

to some differentiating parameters. One of which was the 
distance from the camera to the position of the participant. 
The adopted camera detects a person from 1 m to 4.5 m 
away, and may capture images at different distances from 
the participant. For automatic scaling, a normalization 
(standardization) approach using mean and standard deviation 
was applied, as shown in equation (11):

 z x


 


 (11)

Where μ and σ are the mean and the standard deviation of 
the feature values in one frame.

D. The LSTM Designed Model
This work made use of two models. The first is the 

BiLSTM model, the structure of which consists of two 
BiLSTM layers (sequence to sequence and sequence to 
label) with the number of neurons equal to 125 and 100, 
respectively. In addition, we used one fully connected layer 
with 84 nodes (Fig. 4).

E. The ESN Model
For this work, we adopted the model developed by 

Bianchi et al., 2020, which is depicted in Fig. 5. Here, we 
employed a bi-directional representation of the signal that 
fed a reservoir, producing a collection of states denoted as 
H. High dimensional time series data significantly increases 
the complexity. Therefore, the dimension of Ȟ was reduced 
using principal component analysis (PCA) to produce a 
low dimensional representation denoted as Ȟ. However, 

Ȟ still has two dimensions (features and time steps), thus 
needs to be represented in one dimension to be useful for 
the majority of the machine learning techniques. We have 
adopted a reservoir model (Bianchi et al., 2020) to produce 
a one-dimensional representation of Ȟ to later feed the linear 
readout classifier. In a standard ESN, the readout is linear and 
is quickly trained by solving a convex optimization problem. 
The most important advantage of ESN that is adopted here 
is the low complexity because of the untrained architecture. 
Therefore, unlike the LSTM, we shall see in the next section 
how the ESN will significantly reduce the training time, with 
a very close accuracy to the LSTM.

V. Results and Discussion
A. LSTM Model
The experiments utilized different features for the 

BiLSTM, including the original feature (OF) (30 skeleton 
position), the Delta of the Features (DF) (30 feature), and 
their combination (CF) (60 features). It is important to 
note that the computation time using CF is extremely high; 

Fig. 4. Long short-term memory model structure.

Fig. 3. A Kurdish dynamic sign representing the word “Zirak” meaning 
brave.

Fig. 5. Echo state network model structure (Bianchi et al., 2020).
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consequently, we adopted the low resolution (LR) form 
of the frame representation by ignoring frames with even 
indexes. The normalization step was also investigated in all 
the experiments. To validate the parameters of the Bi-LSTM, 
we adopted a cross-validation approach (10% vs. 70% for 
validation and training, respectively, and 20% for testing the 
model) to tune parameters such as the number of epochs and 
mini-batch size.

The validation results indicate that large number epochs 
and small mini-batch sizes achieve better results when 
using our designed Kurdish dataset. Based on the available 
hardware in this study and to avoid extremely lengthy 
computation time, the optimum number of epochs in this 
model was found to be 250 and the batch size was 1. 
The small batch size may reflect the diversity of the data, 
which could be due to the limited number of participants 
and the number of samples per class in the adopted dataset. 
Table III displays the accuracy obtained by the BiLSTM 
classifier using different features. Although the results 
for all the experiments are similar, for 588 samples the 
adopted normalization step and the delta computation 
demonstrated a significant ability to increase the accuracy 
of the results. The highest accuracy (98.5%) was achieved 
by the normalized combination of the original and its DFs. 
The normalization step improved the accuracy of both OF 
and CF-based models, but was not able to improve the DF-
based model. This could be due to the scaling that took 
place during the delta computation.

B. ESN Model
For the ESN model, we carried out the same experiments 

while using CF features without decreasing the resolution. 
This is because the time complexity of ESN is significantly 
less than that of the LSTM. In the ESN model, the main 
challenge lies in the parameter validation step as ESN is 
unstable due to the randomness of the weight initialization. 
However, adopting the same cross-validation approach tuned 
the size of the reservoir to be 590, the largest eigenvalue 
of the reservoir (spectral radius) as 0.2, the amount of 
leakage in the reservoir state update as 0.6, the percentage 
of nonzero connections in the reservoir (connectivity) as 
0.10, the scaling of the input weights to be 0.3, the noise in 
the reservoir state update as 0.01, the number of transient 
states to be dropped as 1, and the number of epochs to be 
1000. The achieved results for the ESN mode are presented 
in Table IV.

Unlike the LSTM, the normalization step in the ESN 
has not improved the accuracy of OF and CF; however, it 
was the combination feature in both versions that yielded 
the highest accuracy. The normalization pre-processing in 
the PCA included in the proposed ESN model therefore 
appeared to have an effect on the performance of the 
model.

It is worthy to highlight the significant lower computation 
time of the ESN compared to the LSTM (Fig. 6); however, 
a comparable accuracy has been achieved by the ESN 
(Fig. 7). The states in ESN are transformed into the random 

weight space and seem to produce good representation 
of the model. This may have a link to various studies that 

Table IV
Accuracy of ESN using different feature representation

No Feature Accuracy (%) Time (Minutes)
1 Original feature 97.3 6 
2 Delta feature 95.6 10 
3 Combination feature 97.1 7 
4 Combination feature (low resolution) 97.4 1 
5 The normalized original feature 94.4 4 
6 The normalized delta feature 96.4 6 
7 The normalized combination feature 93.5 4 
8 The normalized combination feature 

(low resolution)
91 1 

Table III
Different feature representation with BiLSTM, where the number of 

epochs is 250 and batch size = 1

No Feature Accuracy (%) Time (Minutes)
1 Original feature 97.7 925
2 Delta feature 98.1 912
3 Combination feature (low resolution) 96.1 488
4 The normalized original feature 98.3 939
5 The normalized delta feature 97.8 907
6 The normalized combination feature 

(low resolution)
98.5

Fig. 6. Long short-term memory and echo state network training time for 
different set of features.

Fig. 7. Long short-term memory and echo state network accuracies for 
different set of features.
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prove the usefulness of the random projection in many 
high dimensional space produced by the states of the ESN 
(Al-Talabani et al., 2015).

C. State of the Art Studies
In state-of-art studies, several strands of research have 

been conducted on a variety of styles of sign language. 
However, to make a comparison with our model, the dataset 
needs to have the skeleton version of the data available. 
One of the most well-known datasets which provide the 
skeleton version of the data and is available online is the 
Chinese Sign Language dataset (Liu et al., 2016). This study 
employed 100 Classes from this dataset, which includes 
25000 samples, and adopted the use of the LSTM classifier, 
achieving 85% accuracy. By applying the adopted BiLSTM 
model to the same dataset, the accuracy increased to 95%. 
Similarly, when the ESN model was used, 94.6% accuracy 
was achieved. Additionally, in comparison with the results 
reviewed in Table I, we conclude that none of the reviewed 
works exceed our proposed BiLSTM model as the best 
result was 98% whereas the proposed BiLSTM achieves 
98.5%. It is important to emphasize that the number of 
signs involved in each of the datasets presented in Table I 
are all smaller than our proposed dataset with the exception 
of (Liwicki and Everingham, 2009), which included 230 
signs. However, the latter study achieved an accuracy of 
83%, which is significantly less than our proposed model. 
It is also worthy to highlight that the proposed ESN model 
achieves an accuracy of (97.4%), which is comparable to the 
achieved results in the state-of-the-art studies, however, with 
significantly lower complexity.

VI. Conclusion
The skeleton points extracted by the Kinect sensor V2 have 
a strong ability to capture sign language-related information. 
Furthermore, aspects of feature engineering, such as 
computing the delta of the positions of each skeleton, can 
add complementary information to the features of skeleton 
positions. The nature of gesture data is that it is a time-varying 
signal represented in the sequence of the video frames. As it 
is well-known, RNN based models, especially the BiLSTM, 
achieve outperforming accuracy for ASLR. However, the 
training stage for the BiLSTM is time-consuming and may 
take many hours. As an alternative to reduce the complexity 
of the model, the ESN (where no trained weights are adopted) 
can achieve comparable performance and a highly significant 
decrease in computation time.

The high performance of ESN highlights the usefulness of 
transforming the gesture data on the random weight vectors 
adopted in the ESN. For the future, this motivates us for 
further investigation to link this to the random projection 
capability to extract valuable information for gestures. User 
independent ASLR, where the samples tested for a subject 
is not available in the training stage, can also be studied to 
more validation the current work.
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