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Abstract–Multichannel electroencephalography (EEG) is 
an often used non-invasive method of providing input signals 
to motor imagery (MI)-based brain-computer interface (BCI) 
systems. At present, its use is severely limited due to lack of the 
required level of classification accuracy. Machine learning is used 
in BCIs to identify hidden patterns in EEG data and then classify 
them into appropriate MI tasks. In this study, an approach called 
optimized spectrally weighted common spatial pattern is proposed 
to improve feature extraction in an EEG-based BCI system. It 
enhances information gain by optimizing weights of spectral and 
spatial coefficients, to extract discriminating features from event-
related desynchronization (ERD) brain activity. The proposed 
approach is evaluated by executing it on benchmark dataset 2a of 
BCI Competition IV. The independent component analysis method 
is used for the removal of noise whereas the linear discriminant 
analysis method is used for classification. The experimental results 
using the proposed approach yield higher classification accuracy as 
compared to other approaches reported in the literature.

Index Terms—Brain-computer interface; Common spatial 
pattern; Electroencephalogram; Feature extraction, Motor 
imagery.

I. Introduction
Brain-computer interface (BCI) is a technique for establishing 
a direct communication interface between the brain of a user 
and an external device, without using normal nerve pathways 
(Dai, et al., 2019). It is an advanced technology that can be 
used for the rehabilitation of patients suffering from nervous 
system disorders, by directly translating their intention into 
corresponding commands (Mason and Birch, 2003). The 
human brain controls and coordinates different body parts by 
the transmission of neural signals. Electroencephalography 
(EEG) can be used for recording functional brain activity 

as it is non-invasive, safe, and easy to use, as compared to 
invasive techniques in which sensors are implanted directly 
into the brain during neurosurgery (Bernardi, Pimenta, and 
Moreno, 2019). These signals reflect a particular motor 
imagery (MI) activity of hands, foot, or tongue movements 
(Lotte, et al., 2018). The past decades have seen the advent 
of powerful computer hardware and software, which have 
encouraged researchers to provide more efficient, robust, 
and efficient BCIs for rehabilitation (Wolpow, et al., 2002). 
Although the field of BCI research has seen many advances, 
the desired level of accuracy in the estimation of MI tasks 
is not yet achieved. The EEG signals are adversely affected 
by noise from external environmental and physiological 
resources. These signals are then preprocessed to improve 
their signal-to-noise ratio. It is then followed by spatial and/or 
spectral domain-based feature extraction techniques to extract 
discriminating features from the denoised signals. Finally, a 
classification algorithm is used for estimating the class of the 
brain activity pattern. Various state-of-the-art algorithms can 
be used for the implementation of the various BCI stages. The 
improvement in classification accuracy achieved can enhance 
the reliability of BCI systems, which are then safe to use 
for health-related purposes. The users of an MI-based BCI 
system produce various brain activity patterns corresponding 
to MI tasks, by following experimental protocols as per 
visual clues flashed on the screen. The subject is signaled 
to envisage moving a particular limb but withholding its 
physical movement. Spontaneously, EEG signals are fetched 
whereas the subject executes specific MI tasks of the left 
hand, right hand, both feet, tongue movement, etc. (Gaur, 
et al., 2018). It generates a reduction in mu and beta rhythms, 
called event-related desynchronization (ERD). These rhythms 
called event-related synchronization (ERS) subsequently 
increase after the completion of such a task. The pattern in 
changes of ERD and ERS can be used for input to a BCI 
system. The ongoing research in BCI primarily emphasizes 
improving classification accuracy to attain sufficient 
robustness in MI-based BCI systems. Its overall performance 
is dependent on efficiency attained at its different sequential 
stages of acquiring signals, their preprocessing, extraction 
of features, and classification, as shown in Fig. 1. The EEG 
signals are acquired from different positions of the scalp of a 
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human subject, by placing electrodes, as shown in Fig. 2. The 
acquired signals are prone to huge quantities of noise, which 
is eliminated in the next stage of preprocessing before these 
are fed to the feature extraction stage. Overall performance of 
a BCI system can be enhanced by the selection and execution 
of a combination of algorithms to implement preprocessing, 
feature extraction, and classification stages.

CSP and its variants are widely used feature extraction 
technique using spatial filtering to enhance the discriminability 
of two classes (Zhang, et al., 2015, 2018; Kirar and Agrawal, 
2016, pp. 14–21). Their performance is limited as they manually 
establish frequency bands for successfully discriminating 
between two classes of tasks, as explained in Section 2C.

In this work, the performance of the feature extraction 
stage of BCI implementation is enhanced, by identifying and 
optimizing parameters of SWCSP, which is a popularly used 
variant of CSP. It focuses on the performance of the feature 
extraction component of the EEG-based BCI system, as it has 
a direct bearing on the overall performance of a BCI system. 
Spatial and spectral parameters are optimized and the prior 
filter band of SWCSP is varied to improve feature extraction. 
The performance of the proposed approach is measured by 
executing it on a benchmark dataset and compared with 
reported literature.

A. Related Work
In recent years, many EEG signal feature extraction 

and feature classification techniques are proposed by the 

researchers. In this part, recent studies on feature extraction 
from EEG signal are briefly discussed.

Alam, Ibrahimy, and Motakabber, 2021, have employed 
the power spectral density to extract features on the basis 
of frequency transformation to enhance the classification 
accuracy. However, they have used dataset 2b of BCI 
Competition IV, which is only a two-class MI of the left and 
right movement. In our study, four-class MI of the left and 
right hand besides foot and tongue movement is considered, 
for more effective BCI.

The authors in Rashid, et al., 2020, have reviewed many 
popular BCI applications and analyzed methods used 
for feature extraction, classification, and evaluated their 
performance. They have opined that most of the current BCI 
applications are at a nascent stage, adoption of common BCI 
framework by the research community, and commercialization 
of BCI technology, which can enhance its acceptance and 
popularity in near future. They have also reported that CSP 
and its variants such as common spatial-spectral patterns and 
regularized CSP are popularly used feature extraction methods.

Other BCI researchers have experimented with and proposed 
several alternative methods to implement BCIs, which widely 
vary from simple binary capabilities (Wolpaw, McFarland, 
and Vaughan, 2000), to state-of-art applications such as Talk 
Assist (Kennedy, et al., 2000). This has enabled patients 
suffering from a neurological disorder to compose words by 
contributing a limited input, for useful communication with 
the outside world by controlling external devices. They have 
recommended improvements in learning during training phase 
of the BCI model and identification of reliable techniques for 
meaningful implementation of the BCI model.

A wide number of studies in the past have focused on 
improving methodologies to implement various stages of 
BCI implementations. The data acquired in EEG-based BCIs 
are bulky and contain a lot of artifacts. Various preprocessing 
methods can be used to identify and remove noise. 
Multichannel EEG signals are non-stationary and non-linear; 
hence, information of interest has to be identified efficiently 
(She, et al., 2017). They have proposed a novel method of 
identifying intrinsic mode functions that contain information 
of interest. This has increased classification accuracy, but 
only for some of the subjects, leaving scope for further 
improvement in the future work.

Feature extraction methods can be used for reducing the 
number of features in a dataset, which summarizes most of 

Fig. 2. Timing of dataset 2a from BCI Competition IV (Liu, et al., 2017).
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Fig. 1. A block diagram representing the proposed optimized spectrally weighted common spatial patterns.
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the information contained in the original set of features, by 
selecting task-specific features from EEG signals in spectral 
and spatial domains (Tan, et al., 2017). It identifies important 
features of the data using spectral methods such as Fourier 
transform, wavelet transform (Lemm, et al., 2005), and 
spatial methods like common spatial pattern (Selim, et al., 
2018) (Yang and Wu, 2014). The authors in Tan, et al., 2017, 
have proposed EEG classification by fusing multiple features 
in an orchestrated way to enhance accuracy. This approach 
has additional computational overheads as multiple Siuly and 
Li, 2012, have proposed a cross-correlation-based feature 
extraction method for two-class MI signal recognition. They 
have reported an improvement in classification accuracy 
by 7.40%, by evaluating it on benchmark datasets of BCI 
Competition III. However, a two-class classification is not 
enough for implementing a useful BCI.

In the classification stage, classifier algorithms are used 
for assigning classes to the features extracted from the 
previous stage. The designers of a multiclass classification 
BCI system choose an appropriate classifier for attaining 
a requisite level of efficiency (Padfield, et al., 2019). 
Various classifiers such as artificial neural network, linear 
discriminant analysis (LDA), fuzzy logic, K-nearest 
neighbor algorithm, and support vector machine may be 
employed for the classification of the selected features. 
However, their classification accuracy attainment is not at 
the desired level.

The authors in Nguyen, et al., 2018, introduced a new 
model of BCI consisting of feature extraction and fuzzy 
classification to handle uncertainty, noise, and outliers in EEG 
data. They have used a common spatial pattern algorithm 
to extract discriminant features from multiclass data. They 
have reported performance attained using different popularly 
used algorithms, which are used in this study to compare the 
performance of the proposed approach.

It is analyzed from the study of the related work that CSP 
and its variant SWCSP are widely used feature extraction 
techniques. Hence, the authors in this work have focused 
on improving performance by optimizing its parameters. 
The efficiency gained at the feature extraction stage will be 
reflected by an increase in classification accuracy achieved 
using the proposed approach.

II. Methodology
The effectiveness of the proposed approach is verified 

by implementing preprocessing, feature extraction, and 
classification stages of an EEG-based BCI system. In this 
study, MATLAB-based open-source toolkit BCILAB is used 
for the development, testing, and evaluation of new BCI 
methods (Kothe and Makeig, 2013).

A. EEG Dataset
An EEG-based BCI system analyzes signals fetched by 

electrodes positioned according to the standard international 
10–20 system of EEG, as shown in Fig. 3, on designated 
parts of the scalp (Costantini, et al., 2009).

In this work, benchmark dataset 2a of BCI Competition IV 
(Brunner, et al., 2008) is used. This dataset is publicly accessible 
and is vastly used by the research community to validate 
signal processing and classification methods for BCIs. It 
consists of trials of spontaneous EEG activity recorded from 
nine healthy subjects. One part is labeled, which is used for 
training and another part is unlabeled, which is used as test 
data. It contains 22 EEG Ag/AgCl channels besides three 
electrooculography (EOG) channels and the left mastoid acts 
as a reference while executing one of the four stipulated MI 
tasks. Each subject performs one training session and another 
test session. Each of the two sessions consists of six runs and 
each of the runs has 48 trials consisting of 12 trials for every 
four MI classes. The subject is shown a cue on the screen for 
performing the MI tasks of the left, right hands, both feet, or 
tongue movement (Tangermann, et al., 2012). Every trial starts 
with a short warning sound with a fixation cross, which is 
shown on a computer screen. It is followed by a small arrow 
signaling the subject to begin the execution of a corresponding 
MI task. The arrow sign switches back to the sign of fixation 
cross after 1.25 s and the MI task is continued for 6 s, after 
which the signaling fixation crossfades away from the screen. 
Then, there is a short break turning the screen black again. 
The experiment duration for each trial was 8 s, as shown in 
timing Fig. 2.Each subject’s data set consisted of a training set 
and an evaluation set. The signals fetched in the above trials 
are sampled at 250 Hz, followed by bandpass filtering between 
0.5 and 100 Hz. The noise from the power line is suppressed 
using a 50 Hz notch filter, whereas EOG channels are used for 
ensuing artifact processing (Mannan, et al., 2018).

B. Preprocessing
EEG signals detected at electrodes positioned on 

different parts of the scalp, are overlapping, and have some 
superfluous and misleading information. The signals are then 
preprocessed to boost the signal-to-noise ratio by removing 
artifacts. In this work, independent component analysis (ICA) 
is used to isolate the artifacts inbuilt in the signals acquired 
from several electrodes. ICA applies a variable representing 

Fig. 3. International 10–20 system of electrode placement (Tangermann, 
et al., 2012).
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the “unmixing” matrix of weights (W). It is multiplied by 
the matrix of scalp data for creating a matrix of independent 
component activities. In this work, EEGLAB, which is 
a MATLAB-based toolkit, is used for implementing the 
Infomax ICA algorithm, as it is a popularly used technique 
for the decomposition of mixed signals.

C. Feature Extraction
The obtained preprocessed signals are then applied feature 

extraction method to the preprocessed EEG signals. In this 
work, a variant of CSP is used to extract features, while 
optimizing its parameters to enhance the performance of the 
BCI system.
CSP

It is a popularly used method of feature extraction using 
spatial filtering for increasing the discriminability of two 
classes (Zhang, et al., 2015, 2018; Kirar and Agrawal, 2016, 
pp. 14–21). It establishes linear subspaces in such a way that 
the variance in one projected class is enhanced to a maximum 
value while reducing the variance in another class to a 
minimum value (Ramoser, Muller-Gerking, and Pfurtscheller, 
2000). The optimum spatial filters are identified by combined 
diagonalization of the covariance matrices corresponding 
to each of the two classes of EEG signals. The covariance 
matrix of EEG signal E, from each trial, is calculated as:

C
E E

trace E
N T N T

T

N TEN T
T

= * *

*
( )

*

 (1)

Where, EN*T represents the EEG signal of the trial, N 
represents number of channels, T denotes number of points 
in the EEG signal in the trial, and trace(X) is the sum of 
diagonal values in matrix X. The sum of the covariance 
matrix for class i of the subject is:
C C i mi m

M
 ( , )
1

 (2)

In CSP, the frequency band for successfully discriminating 
two tasks is manually established. Another variant of CSP 
called SWCSP was proposed to avoid repeated experiments 
to find this frequency band (Park, Lee, and Kim, 2014).
Spectrally weighted common spatial pattern (SWCSP)

Feature extraction from the signals preprocessed in the 
earlier stage is done using SWCSP (Tomioka et al., 2006) 
(YÜKSEL, 2016). It is employed for extracting the weighted 
CSP features by using the subject-specific spectral and 
temporal spectral filters for establishing distinction between 
various MI tasks. The SWCSP transforms domain of time 
to frequency and performs optimization of spatial filters by 
using CSP and spectral filters by Fisher’s criterion sequentially 
and iteratively. The most relevant channels are selected, and 
irrelevant ones are rejected from extracted SWCSP features. It 
uses an iterative algorithm to calculate optimum values of the 
spatial filter and spectral coefficients. It determines a feature 
vector with J columns as

   j j j
T

j j
T T

jX B XB B X, , log    (3)

Where, ωj ∈ RN is the spatial filter vector and Bj ∈ RTxT linear 
temporal filter. It contains the spectral filter coefficients for 

localized MI signal in frequency domain optimization of spatial 
filter (wj). Let U be Fourier transformation matrix where

U
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kl
T

 1 2
CTxT  (4)

UU IT
T xT=  (5)

Inserting UUT into the equation generates a sensor 
covariance matrix as:

c T
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is a diagonal matrix including spectral weights αt and {}C 
in Equation 6 represents the expected value within Class c.

XU ∈ CN*T represents the Fourier transformed input signal 
and Xt ∈CN represents ith frequency component. The cross-
spectrum matrix based on αt is represented as
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The α coefficients are calculated by following the 
optimization function solved with Fisher discriminant 
analyses (FDAs)
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where (αt ≥0)
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t
T
kt

T
( , )    

 1  (10)
in which c represents the class label. Both spatial 

and spectral coefficients are updated alternately at each 
optimization step. Generalization of spectrum information of 
the task is represented in the following equation:

  k
c

k
c q

k
popt
where c( ) ( )
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Where, k k
T
1
'  represents the prior information of the 

spectrum specific to the problem. The values of p and q 
parameters are dependent on data, preprocessing, and prior 
information. Hence, their optimal values can be chosen using 
cross-validation. Finally, the classifier is executed on all 
SWCSP features in different time intervals to allocate a class 
to the features.
Optimized spectrally weighted common spatial pattern 
(OSWCSP)

In this work, spatial and spectral filter parameters of 
SWCSP are identified and iteratively optimized to improve 
its performance, as shown in Fig. 1. The signals were pre-
filtered in a particular frequency band subject wise, as shown 
in Table I, to attain better performance. The increase in its 
performance is reflected in the accuracy of classification of 
the features extracted using SWCSP. Hyperparameter (m) 
represents a count of spatial filters used for constructing 
it. All possible values of m were considered and the best 
value of m giving the highest accuracy is selected. The 
spectral filter optimization in SWCSP is done by changing 
hyperparameters (p and q), whereas the prior filter band is 
varied from subject to subject. Since optimal values of the 
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spatial, as well as the spectral filters, are interdependent, we 
have employed an iterative method that begins from the basic 
CSP method for spatial filters and updates one fixing the 
other alternately, as shown in Fig. 1.

D. Classification
In this work, LDA is used as a classifier as it is reported to 

offer higher classification accuracy in many MI-based BCIs 
(Lotte, et al., 2007) (Resalat and Saba, 2016) (Bashashati, 
et al., 2007). LDA is a technique of dimensional reduction, 
which is often used for classification based on supervised 
learning. It classifies a recorded set of observations into pre-
configured classes, by finding the combination of a linear 
feature to establish a distinction between signal classes. 
It starts with the calculation of interclass variance, which 
represents separability between different classes. It then 
calculates the intraclass variance, which is the distance 
between the mean and sample of each class, and finally 
calculates a lower-dimensional space, such that interclass 
variance is maximized and intraclass variance is minimized 
(Kołodziej, Majkowski, and Rak, 2012).

III. Results and Discussion
To measure the performance of the proposed approach, MI-

based BCI system consisting of signal preprocessing, feature 
extraction, and feature classification was carried out using 
MATLAB R2015a. ICA was employed for preprocessing to 
isolate and discard artifacts from the experimental dataset. The 
proposed method of OSWCSP was executed for implementing 
the feature extraction phase of BCI, whereas the LDA 
method was employed for the classification of these signals 
into corresponding MI tasks. Experiments were conducted 
to verify the performance of OSWCSP while optimizing its 
parameters. Various extensions of CSP were also chosen and 
their performance was compared with that of the OSWCSP. 
The proposed approach was executed on the publicly available 
dataset 2a of BCI Competition IV which has EEG recordings 
from nine subjects whereas they performed MI tasks. This 
benchmark dataset consists of 288 trials per session, having 
72 trials whereas subjects performed MI tasks of each of 
four classes. The recorded EEG signals were processed 
using ICA for removing undesired artifacts, whereas features 
were extracted using the proposed method of OSWCSP, and 

LDA was used for classification. The overall efficiency of 
the system using the proposed feature extraction approach 
was calculated in terms of classification accuracy for each of 
the subjects. In the proposed approach of OSWCSP, values 
of three hyperparameters (m, p, and q) were optimized to 
improve overall classification accuracy. The improved value 
of classification accuracy was attained at m = 3, p = 0, and 
q = 0.1 for subjects 1, 3, 4, 6, 7, 8, and 9, whereas q = 1.0 
for subjects 2 and 5. We have used 5-fold cross-validation to 
achieve a bias-variance trade-off. The k is assigned a value of 
5, as it this not prone to high bias or variance. In each cycle, 
the dataset is shuffled randomly and split into five groups. The 
5-fold cross-validation procedure is executed as follows:
•	 The dataset is shuffled randomly
•	 Data sample is partitioned into five subsets
•	 For i = 1–5

• Train the classification algorithm on all samples except 
belonging to fold i

• Test the classifier on a sample of fold i
• Calculate the percentage Pi of correctly classified 

sample
•	 Classification accuracy is calculated as

E
P

i

k
i

  5

5
 (12)

in which the data sample is partitioned into five subsets. 
Iteratively, one of the subsets is used as a testing dataset 
whereas the remaining subsets are treated as training datasets. 
Then, the model is fitted to a training set and evaluated on 
the test dataset, and the average accuracy attained in five 
such cycles is calculated.

We have optimized the spatial projection, by applying a 
bandpass filtering dataset for each subject, from 7 to 34 Hz, 
and CSP projection with m = 3. Patterns corresponding to 
each of the four classes are calculated on the complete 
dataset, for eliminating unrelated frequency bands. Spectral 
filtering is applied on spatially filtered datasets using SWCSP, 
which has parameters p and q as given in Equation 11, 
required for tailoring the feature extraction method to 
specific data. The scaling factors of the spectral filter are 
selected for each subject using the grid search method, 
which consists of coarse and fine grid search methods. In 
coarse grid search, we selected a wide frequency band, which 
is then narrowed down using fine grid search. The other 
hyperparameters p and q are varied in the range [0, 1]. It 
attained the best classification accuracy at m = 3 whereas p 
and q were varied in a range of 0 and 1. The performance of 
the proposed optimization is evaluated on the classification 
of the benchmark dataset, which is then compared with other 
approaches evaluated on the same benchmark dataset. The 
performance comparison in terms of classification accuracy, 
which is the number of correct predictions divided by the 
total number of predictions, is shown in Table I and Fig. 4.

Classification accuracy attained for all subjects 1, 2, 3, 
5, 6, 7, and 8 is higher than the result reported in (Nguyen, 
et al., 2018). The efficacy of the proposed feature extraction 
technique is also evident from an improvement in average 

Table I
Classification Accuracy on Dataset 2A

Subject Frequency range from to P q Accuracy
1 9 32 0 0.1 0.826
2 7 30 0 1.0 0.621
3 7 28 0 0.1 0.893
4 7 30 0 0.1 0.539
5 9 32 0 1.0 0.513
6 9 32 0 0.1 0.57
7 7 28 0 0.1 0.795
8 7 28 0 0.1 0.886
9 7 28 0 0.1 0.886
Mean 7 28 0 0.1 0.705
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classification accuracy to 70.6%, as shown in Table II. The 
confusion matrix of the results is shown in Table III, which 
depicts correct and incorrect predictions, broken down by 
class of left hand, right hand, feet, and tongue MI task.

IV. Conclusion
In this work, the optimized SWCSP approach is proposed 
for feature extraction from multiclass MI EEG signals. In 
preprocessing stage, ICA is used for removing artifacts from 
acquired EEG signals. The next stage of feature extraction is 
implemented by the proposed OSWCSP method, whereas its 
parameters are varied to search for their optimal values using 
the grid search method. The selected features are then input to 
the LDA classifier. The performance of the proposed approach 
was evaluated on dataset 2a from BCI Competition IV, which is 
used as a benchmark by many in the reported literature, using a 
5-fold cross-validation process yielding improved performance. 
The proposed approach yields an average classification accuracy 
of 0.706, which is better than the accuracy attained using 

other approaches executed on the same benchmark dataset, as 
reported in the literature. It has the potential to enhance the 
robustness and reliability of future EEG-based BCI systems for 
rehabilitation. The challenge is now to test the efficacy of the 
proposed approach in a real online BCI system.
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