
ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

6 http://dx.doi.org/10.14500/aro.10180

A Comparative Study for String Metrics and the
Feasibility of Joining them as Combined Text

Similarity Measures
Safa S. Abdul-Jabbar1 and Loay E. George2

1Computer Department, College of Science for Women,
University of Baghdad, Baghdad, Iraq

2Computer Department, College of Science,
University of Baghdad, Baghdad, Iraq

Abstract–This paper aims to introduce an optimized Damerau–
Levenshtein and dice-coefficients using enumeration operations
(ODADNEN) for providing fast string similarity measure with
maintaining the results accuracy; searching to find specific words
within a large text is a hard job which takes a lot of time and efforts.
The string similarity measure plays a critical role in many searching
problems. In this paper, different experiments were conducted to
handle some spelling mistakes. An enhanced algorithm for string
similarity assessment was proposed. This algorithm is a combined
set of well-known algorithms with some improvements (e.g. the
dice-coefficient was modified to deal with numbers instead of
characters using certain conditions). These algorithms were adopted
after conducting on a number of experimental tests to check its
suitability. The ODADNN algorithm was tested using real data; its
performance was compared with the original similarity measure. The
results indicated that the most convincing measure is the proposed
hybrid measure, which uses the Damerau–Levenshtein and dice-
distance based on n-gram of each word to handle; also, it requires
less processing time in comparison with the standard algorithms.
Furthermore, it provides efficient results to assess the similarity
between two words without the need to restrict the word length.

Index Terms–Word classification, Word clustering, String
distance, String matching operation, and String similarity metric.

I. Introduction
To find the similarity ratio between strings, many comparing
operations should be used, this subject considered as a
basic task in natural language processing (NLP), as well as
other disciplines such as computational biology. In NLP,
the sequences of symbols are composed of a number of
sentences, consisting of words. In the first approximation

(such as applications in speech recognition), sentences are
considered to be more similar to the more words they share
and the reordering is no consideration. While in the second
approximation (such as Grammar induction), the reordering
of single words and blocks between two sentences can be
expected (Leusch, et al., 2003; Mohri, 2003).

Many applications require string search with errors
possibility. These applications should use a matching function
to the user entry (which may contain an incorrect spelling) in
the database. This operation should be done in milliseconds
(Fenz, et al., 2012).

The problem underlying the searching operation,
measuring the similarity or dissimilarity of two strings, had
been a powerful topic of research for over five decades,
ranging from early operations to modern machine learning
and data analysis. Each method uses different aspects and
characteristics of the data (Rieck and Wressnegger, 2016).

Various similarity measures were proposed for use in
various fields: Damerau and Levenshtein introduced a
method named Damerau–Levenshtein that used as a string
metric between two strings. By counting the minimum
number of operations needed to transform one string to
the other, through measuring the substitution operations
of a single character besides the insertion, deletion, or
transposition operation of two adjacent characters (provided
by the Levenshtein distance) (Damerau, 1964). These
measures are based on probabilistic modeling for a particular
applied instance. For example, in error correction of noisy
sentences (Kashiap and Oommen, 1984; Oommen, 1987)
and in recognition tasks (Marzal and Vidal, 1993; Bunke
and Bühler, 1992; Cortelazzo, et al., 1996; Cortelazzo, et al.,
1994; Peng and Chen, 1997); Winkler had proposed an
enhancement to the Jaro metric based on the observation that
spelling errors may occur commonly at the end of a string
(Winkler, 1999). While the N-gram techniques can determine
the similarity between strings from given text sequence by
computing the similarity, on the basis of the distance between
each character in the compared two strings. This distance is
computed by dividing the number of similar grams by the
maximal number of n-grams (Alberto, et al, 2010).

ARO-The Scientific Journal of Koya University
Volume V, No 2(2017), Article ID: ARO.10198, 13 pages
DOI: 10.14500/aro.10180
Received 03 December 2016; Accepted 09 September 2017
Regular research paper: Published 21 October 2017
Corresponding author’s e-mail: safasami1988@scbaghdad.edu.iq
Copyright © 2017 Safa S. Abdul-Jabbar and Loay E. George. This
is an open access article distributed under the Creative Commons
Attribution License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10180 7

Sehgal, et al. (2006) compared three string similarity
measures on a data integration task; they referred that edit
distance is better than Jaccard and Jaro-Winkler when mapping
between two sets of place names in Afghanistan. Martins
(2011) used machine learning to classify gazetteer records as
duplicates or non-duplicates and compared the importance of
several feature types, including eight string similarity measures.
The experimental results show that using feature vectors which
combined from (place names, semantic relations, place types,
and geospatial footprints) leads to an increase in the results
accuracy. Wang, et al. (2014) proposed a new hybrid similarity
metrics, called “fuzzy token matching based similarity,” which
extends token-based similarity functions (e.g., Jaccard similarity
and Cosine similarity) by allowing the fuzzy match between
two tokens. They considered as new signature schemes and
develop effective techniques to improve the performance.
Different measures of distance or similarity are convenient for
different types of analysis:
1- String Similarity: Defines a similarity between two strings

(0 means strings are completely different, 1 means strings
are identical) like Sorensen–Dice coefficient (Dice, 1945).

2- String Distance: Defines a distance between two strings
(0 means strings are identical), like Damerau–Levenshtein.
The maximum distance value depends on each algorithm
(Sellers, 1980; Hall and Dowling, 1980).

In this paper, many measures were implemented to
make a decision about which one was more suitable to
use. The implemented algorithms are listed in Table I. While

in Table II, the comparison of different similarity metric methods
was described in the context of their advantages and weak points.

These methods can be merged to provide fast retrieval
systems, using the symbols enumeration operation for
handling the string operations as a sequence of numbers
instead of a sequence of characters to reduce the hidden cost
of the string operations; this will reduce the memory, time,
and CPU consumption.

II. Materials and Methods
In this paper, many different metrics were explored to decide
which one is suitable for string-matching purpose depending
on the elapsed time with respect to the result accuracy.
Furthermore, a set of hybrid algorithms was made up using
several existing measures with a simple modification. According
to the conducted comparisons between eight string distance/
similarity for evaluating them in terms of the consumed time; a
brief summary of each one is presented in this section.

The experiments for these algorithms were involved
with words of length (1-16) characters only. The conducted
statistical analysis of the used datasets showed that
approximately 99% of the overall words in each dataset are
available in this range of word length; as depicted in Table III.

The number of comparisons for each given word will be
reduced using a specific threshold based on the word length.
The process of selecting the threshold was treated as follows:
• For words that have length ≤5, the threshold=1) the

comparison operations were made with only words that
have the length equal ±1 to the length of the given word).

• For words that have length ≥6, the threshold=2) the
comparison operations were made with words that have the
length equal ±2 to the length of the given word).

Which means the types that are processed in the proposed
system are limited in two types: Words with length ≤5 have
the possibility of one error only, whereas words with length
>5 allow errors with two letters as the maximum probability.
Then, to get the best system performance, the proposed system
used the integrated number of similarity measures which

Table I
The Studied String Metric Methods

Method name Type
Levenshtein Distance
Damerau–Levenshtein Distance
Longest common subsequence Distance
Jaro–Winkler Similarity measures
N-Gram Distance
Dice coefficient Similarity measures
Matching coefficient Similarity measures
Overlap coefficient Similarity measures

Table II
Comparison of Different Similarity metrics methods

Method name Advantage Disadvantage
Levenshtein and
Damerau–Levenshtein

Gives the best result in case of short string and it is fast and best
suited for strings similarity (Pradhan, et al., 2015; Patel, 2016)

In case of long string cost of Levenshtein distance is same as
the length of string and considered it is not order of sequence of
characters while comparing (Pradhan, et al., 2015; Patel, 2016)

Longest common
subsequence

- Uses the recursion approach which uses stack that takes lots of
space (Pradhan, et al., 2015)

Jaro–Winkler Gives better result in case of hybrid method (Pradhan, et al.,
2015)

If the data size is too much large, then Jaro distance similarity not
gives efficient results (Pradhan, et al., 2015)

N-gram Similarity technique is high (Pradhan, et al., 2015) They are not suitable at multilingual environment, and the
accuracy is very less (Pande, et al., 2013; Pradhan, et al., 2015)

Dice coefficient Obtain satisfactory results and used to consider the sizes of
the two words and the similarity score will be normalized
into [0,1] (Pradhan, et al., 2015)

-

Matching coefficient Very simple vector-based approach which simply counts the
number of similar terms (dimensions) (Gomaa and Fahmy, 2013)

If one of these dimensions is zero, this method cannot work
efficiently (Gomaa and Fahmy, 2013)

Overlap coefficient Similar to the Dice’s coefficient, but considers two strings a full
match if one is a subset of the other (Gomaa and Fahmy, 2013)

-

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

8 http://dx.doi.org/10.14500/aro.10180

have proven successful through experiments. These combined
measures were used for measuring the string distance between
pairs of strings. The considered measures are:
• Dice coefficient and N-gram (DN).
• Dice coefficient, N-gram, and Damerau–Levenshtein

(DADN).
• Damerau–Levenshtein and longest common subsequence

(DAL).

A. DN Measure
It is obtained by integrating the N-gram measure with the

dice-coefficient measure to increase the similarity results
accuracy. Algorithm (1) illustrates the implementation steps
for DN.

Algorithm (1): DN Algorithm

Objectives: Measuring the similarity between two given strings.
Input: Variable number of input words (string1), Text File.
Output: Integer value, words List contain the same number of

input words, which is the most similar words from files.

Step1:
String [] s1 → string1.Split(‘ ‘) //Read the given string

 and split it to words array
 using the space delimiter

Double len → 0, Double total_len → 0
Double temp → -1, Int g→0

Step2:
StreamReader sr →new StreamReader(ss)

//Read the file
content

line = sr.ReadToEnd();
string[] words = line.Split(‘ ‘); //Split the file content in

 to words using the space delimiter
For i = 0 to s1.Length-1 step 1 do
 For j = 0 to words.Length-1 step 1 do
 If (((s1[i].Length >= 1) & (s1[i].Length <= 5)) &

 ((s1[i].Length <= words[j].Length + 1) && (s1[i].
 Length >= words[j].Length-1))) then//For words
 that have length0-5 the threshold of error is 1 char.

 temp → DiceCoefficient(s1[i], words[j])
 If (len == 0) then len=temp, g = j
 Else If (temp > len) then len = temp, g = j
 End If
 Else If (((s1[i].Length >= 6) & (s1[i].Length <= 18)) &
((s1[i].Length <= words[j].Length + 2) & (s1 [i].Length >=

words[j].Length - 2))) then//For words that more than 5
characters the threshold of error is 2 char.
temp → DiceCoefficient(s1[i], words[j])
 If (len == 0) then len=temp, g = j
 Else If (temp > len) then len = temp, g = j
 End If
 End If
 temp →0
End For
total_len = total_len + len//For collect distance of all

 words in the given string
list1.Items.Add(words[g]);
len → -1, temp → -1
End for

Step3:
Int Result_Distance= total_len/s1.Length

End;

Function1: Double DiceCoefficient(string stOne, string stTwo)//
For strings instead of char comparing using words of two
characters

List<string> nx, ny; string temp = “”
For i = 0 to stOne.Length – 2 step 1 do
 temp = “” + stOne[i] + stOne[i + 1]: nx.Add(temp)
End For
For j = 0 to stTwo.Length – 2 step 1 do
 temp = “” + stTwo[j] + stTwo[j + 1]: ny.Add(temp)
End For
 If (stOne.Length == 1)//For handling words with one
character
 temp = “” + stone, nx.Add(temp)
End if
 If (stTwo.Length == 1)//For handling words with one
character
 temp = “” + stTwo, ny.Add(temp)
End if
HashSet<string> intersection = new HashSet<string>(nx)
 intersection.IntersectWith(ny), double dbOne =
intersection.Count//Determine the intersection between
words

Return (2 * dbOne/(nx.Count + ny.Count))

B. DADN Measure
It is obtained by integrating the previous mentioned DN

algorithm with Damerau–Levenshtein distance measure
to increase the result accuracy; this integration aimed to
take the advantage of Damerau–Levenshtein efficacy and
speed. Then, handling the situation of equal single character
movement results with a DN measure to decide which string
is more similar to a given one. Algorithm (2) illustrates the
implemented steps for DADN.

Algorithm (2): DADN Algorithm

Objectives: Measuring the similarity between two given strings.
Input: Variable number of input words (string1), Text File.

Table III
The Words Count within the Considered 4 Datasets of Complete

Words whose Lengths bounded between [1,16] Characters

Dataset# No. of words in the overall dataset No. of words from 1 to 16 char.
Dataset 1 530421873 (%100) 529051745 (%99.74)
Dataset 2 63948272 (%100) 63944562 (%99.99)
Dataset 3 246650908 (%100) 246598321 (%99.97)
Dataset 4 3455357163 (%100) 3452403297 (%99.88)

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10180 9

Output: Integer value, List of words contains the same number
of input words, which is the most similar words from files.

Step1:
String [] s1 → string1.Split(‘ ‘)//Read the given string and

 split it to words array using the space delimiter
Double len → 0, Double total_len → 0//Define the

variables
Double temp → -1, Int g →0
 DamerauLevensteinMetric da=newDamerauLevenstein
Metric()//Define the object da as class of Damerau
Levenste in Metric

Step2:
StreamReader sr →new StreamReader(ss), line =

 sr.ReadToEnd()//Read the file content
String[] words = line.Split(‘ ‘)//Split the file content in to

 words using the space delimiter
For i = 0 to s1.Length-1 step 1 do
For j = 0 to words.Length-1 step 1 do
If (((s1[i].Length >=1) & (s1[i].Length<=5)) & ((s1[i].

 Length<=words[j].Length+1) &
 (s1 [i].Length>=words[j].Length - 1))) then//

 For words that have length 0-5 the threshold of error
is 1 character

temp → da.GetDistance(s1[i], words[j], 100)
If (len == 0) then len → temp, g → j
 If (temp < len) then len → temp, g → j
 else If ((temp==len) & (j!=g) & (len!=0)) then
 Double one → DiceCoefficient(s1[i], words[g]),

Double two → DiceCoefficient(s1[i], words[j])
 If (one > two) then g = j
End If

else If (((s1[i].Length>=6) & (s1[i].Length<=18)) & ((s1[i].
Length<=words[j].Length+2) &

 (s1 [i].Length >= words[j].Length - 2))) then//For
words that have more than 5 char. the threshold of
error is 2 char.

temp → da.GetDistance(s1[i], words[j], 100)
If (len == 0) then len=temp, g = j
If (temp < len) then len = temp, g = j
else If ((temp == len) & (j!= g) & (len != 0)) then
 Double one → DiceCoefficient(s1[i], words[g]),

 Double two → DiceCoefficient(s1[i], words[j])
 If (one > two) then g = j
 End If
End If
temp →0

End For
total_len = total_len + len//For collect distance of all words in

the given string
list1.Items.Add(words[g]), len → -1, temp → -1

End for
Step3:

Int Result_Distance= total_len/s1.Length
End;

Function1: Double DiceCoefficient(string stOne, string stTwo)//
The Same Function Steps (used to compare between

two strings using Dice-Coefficient and N-gram) as
in Algorithm(1)

Class DamerauLevensteinMetric
Const Int DEFAULT_LENGTH → 255
Int [] currentRow, previousRow, transpositionRow//Define

 the variables
Double GetDistance(String first, String second, Int

 max)//Max is the threshold of movements number
Int maxLength → DEFAULT_LENGTH//Maximum

 number of characters in each word
currentRow → new Int[maxLength +1], previousRow →

 new Int[maxLength +1],
transpositionRow →new Int[maxLength +1]
Int firstLength → first.Length, Int secondLength →

second. Length//2Variable to store the length of
string1 &2

If (firstLength == 0) then Return secondLength//If string1
was empty return the number of char. in string2

If (secondLength==0) then Return firstLength//If string2
 was empty return the string1 length

If (firstLength > secondLength) then//Swap between string to
make the second string with larger length and swap length

Swap (first, second), firstLength → secondLength
End If
If (secondLength - firstLength > max) Return max + 1//

 If the different is larger than threshold the return
 threshold+1

If (firstLength > _currentRow.Length) then
currentRow = new Int [firstLength + 1], previousRow =

 new Int [firstLength + 1],
transpositionRow = new Int[firstLength + 1]
End If
 For i = 0 to firstLength step 1 do//As an initial value store
the counter value then use this array to store the value of
movements for each step(character)
 previousRow[i] → i
End For
 Char lastSecondCh → ‘\0’//The last used char in the
second string
For i = 1 to secondLength step 1 do
 Char secondCh → second[i - 1], currentRow[0] →

i//Compute only diagonal stripe of width 2*(max+1)
 Int from → Max(i - max - 1, 1), Int to → Min(i +

max + 1, firstLength)//The start & end positions for
checking process

 Char lastFirstCh → ‘\0’//The last used char from
first string

 For j = from to to step 1 do
 Char firstCh = first[j - 1]//Compute minimal cost

of state change to current state from previous
states of deletion, insertion and swapping

 Int cost = 0
 If (!(firstCh == secondCh)) then cost = 1
 Int value = Min(Min(currentRow[j -1] + 1,

previousRow[j]+1), previousRow[j -1]+ cost)
 //If there was transposition, take in account its

cost only if the transposed characters are adjacent
 If (firstCh == lastSecondCh && secondCh ==

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

10 http://dx.doi.org/10.14500/aro.10180

lastFirstCh) then
 value = Min(value, _transpositionRow[j - 2] + cost),
currentRow[j] = value, lastFirstCh = firstCh
End if

End For
 lastSecondCh = secondCh, Int[] tempRow =
transpositionRow, transpositionRow = previousRow
previousRow = currentRow, currentRow = tempRow

 End For
 Return previousRow[firstLength]
End Class

C. DAL Measure
It is obtained by integrating Damerau–Levenshtein distance

measure with the longest common subsequence measure. The
longest common subsequence algorithm is used to handle
the advantage of Damerau–Levenshtein efficacy and speed.
It handles the cases of similar results for several words in the
file to a given word, and hence, to decide which string is more
similar to a given one. This measure checks the similar character
sequence and takes the word with larger values of the sequence.
Algorithm (3) presents the implementation steps for DAL.

Algorithm (3): DAL Algorithm

Objectives: Measuring the similarity between two given strings.
Input: Variable number of input words (string1), Text File.
Output: Integer value, List of words containing the same number

of input words, which is the most similar words from files.

Step1:
 String [] s1 → string1.Split(‘ ‘)//Read the given string and
split it to words array using the space delimiter
 Double len → 0,Double total_len → 0, Double temp
→ -1,Int g→0//define the variables
 DamerauLevensteinMetric da=new DamerauLevenstein
Metric()//define the object da as class of Damerau
LevensteinMetric

Step2: StreamReader sr →new StreamReader(ss), line =
sr.ReadToEnd()//Read the file content

 String[] words = line.Split(‘ ‘)//Split the file content in to
words using the space delimiter
For i = 0 to s1.Length-1 step 1 do
 For j = 0 to words.Length-1 step 1 do If((s1[i].
Length>=1)&(s1[i].Length<=5))&((s1[i].Length<=words[j].
Length+1)&
 (s1[i].Length>=words[j].Length-1)) then//For words that
have length 0-5 the threshold of error is 1char
temp → da.GetDistance(s1[i], words[j], 100)
If (len == 0) then len → temp, g → j
If (temp > len) then len → temp, g → j
 Else If ((temp==len) & (j!=g) & (len! 0)) then//For words
that have length 0-5 the threshold of error is 1 char.
 Double one → LongestCommonSubsequence(s1[i],

words[g])
 Double two → LongestCommonSubsequence (s1[i],

words[j])

 If (one > two) then g = j
End If

Else If (((s1[i].Length>=6) & (s1[i].Length<=18)) & ((s1[i].
Length<=words[j].Length+2) &

 (s1 [i].Length>=words[j].Length - 2))) then//For words
that more than 5 char. the threshold of error is 2 char.

 temp → da.GetDistance(s1[i], words[j], 100)
 If (len == 0) then len=temp, g = j
 If (temp > len) then len = temp, g = j
 Else If ((temp == len) & (j!= g) & (len != 0)) then
 //For words that have length 0-5 the threshold of

error is 1 char.
 Double one → LongestCommonSubsequence (s1[i],

words[g])
 Double two → LongestCommonSubsequence (s1[i],

words[j])
 If (one > two) then g = j
End If

End If
temp →0
End For
 total_len = total_len + len//For collect distance of all
words in the given string
list1.Items.Add(words[g]), len → -1, temp → -1
End for

Step3:
Int Result_Distance= total_len/s1.Length, list1.show

End;

Function1: Int LongestCommonSubsequence (String str1,
String str2)

 String sequence → “”
 If ((str1.Length == 0) | (str2.Length == 0)) then Return

0
 Int [,] num = new int[str1.Length, str2.Length]//Array

used for count the number of identical char. in the given
strings

 Int maxlen → 0, Int lastSubsBegin → 0, String
sequencestring → “”

 For i = 0 to str1.Length-1 step 1 do
 For j = 0 to str2.Length step 1 do
 If (str1[i] != str2[j]) then num[i, j] = 0
 else If ((i == 0) || (j == 0)) then num[i, j] = 1//

Every time check characters from it arrived to the
end of char start from 1 for counter

 else num[i, j] → 1 + num[i - 1, j - 1]
 End If
If (num[i, j] > maxlen)
 maxlen → num[i, j]
 Int thisSubsBegin → i - num[i, j] + 1
If (lastSubsBegin == thisSubsBegin)
 sequencestring → sequencestring + str1[i]
End If
else// This block resets the string builder if a different LCS

is found
lastSubsBegin → thisSubsBegin, sequencestring → “”//Clear it
 sequencestring → sequencestring + str1. Subsequence
(lastSubsBegin, (i + 1) - lastSubsBegin)

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10180 11

 End If
 End If
 End For
End For
sequence → sequencestring

Return maxlen
Class DamerauLevensteinMetric// The Same Class Steps as in

Algorithm(2)

After identifying the best algorithm, DADN, we modified
it to deal with numbers rather than strings where this
modification will produce a new method entitled dice
coefficient, N-gram, and Damerau–Levenshtein using
enumeration method (DADNEN). The test results of this
algorithm indicated that the modified algorithm has a positive
impact on the results for words with length ranging between 1
and 13, but has no effect on the words with the length which
is equal or larger than 14. Hence, some conditions were used
in the modified algorithms to control the performance of this
algorithm with a wide range of word lengths (i.e., making
the system work flexibly with all word lengths as much as
possible). Algorithm (4) illustrates the implemented steps of
the modified optimized DADNEN (ODADNEN) algorithm.

Algorithm (4): ODADNN Algorithm

Objectives: Measuring the similarity between two given strings.
Input: Variable number of input words (string1), Text File.
Output: Integer value, List of words contains the same number

of input words, which is the most similar words from files.

Step1: Define The Variables
Byte[] bytes = Get Bytes(string1)//Read the given string

 and split it to words array using the space delimiter
Int word_length → 0//Start and end and length for each

 word in the input strings
Int start → 0, Int end→0, Double len → -1//Number of

 movements required for each two strings
Double total_len → 0//The total number of movements

for all the given strings
 DamerauLevensteinMetricen da = new DamerauLevenste
inMetricen()
 // Define the object da as class of Damerau

Levenstein Metric
Step2: Read text files as blocks of bytes.//For each Text file

read its content as blocks of bytes with size about 4 MB for
each block till reaching the end of file

Step3: Count Length for each word.//Determine the start (s)
and the end (e) of each word (array of bytes) for each word
in the given string (bytes)

Step4:
For Each Word in bytes
 For j = 0 to bytes2.Length-1 step 1 do
 While (end2 < bytes2.Length & (bytes2[end2] != 32))
 end2++
End while
wordfile_length[no] → end2 - start2 - 1
If (wordfile_length[no] <= 18)

(C, b)→ array of bytes [wordfile_length[no] + 1]
Buffer.BlockCopy(bytes2, start2, b, (18 * no)
wordfile_length[no] + 1)//To determine the start of each row
Buffer.BlockCopy(bytes2, start2, c, 0, wordfile_length[no] + 1
 If ((word_length<=5) & (word_length<=wordfile_
length[no]+1) & (word_length>= wordfile_length[no]-1))
then//for words that have length 0-5 the threshold of error
is 1 char.
temp → da.GetDistance(a, c, 100)
If (len == -1) then len →temp, g →no
If (temp < len) then len → temp, g → no
Else If ((temp == len) & (no != g) & (len != 0)) then
 Double one → DiceCoefficient(a, c), Double two →
DiceCoefficient(a, c)
If (one > two) then g = no
End If

Else If (((word_length >= 6) & (word_length <= 18)) &
((word_length <= wordfile_length[no] + 2) & (word_length
>= wordfile_length[no] - 2))) then

//for words that have length larger 5 the threshold of error
is 2 char.

 If (s1[i].Length < 14) then//For decide if there is a need to
use the enum methods according to the words length.
 Byte[] bytes1 = GetBytes(s1[i]), byte[] bytes2 =

GetBytes(words[j])
 temp = da.GetDistanceen(bytes1, bytes2, 100)
 If (len == -1) then len = temp, g = j
 If (temp < len) then len = temp,g = j
 else if ((temp == len) & (j != g) & (len != 0)) then
 double one = DiceCoefficient(s1[i], words[g])
 double two = DiceCoefficient(s1[i], words[j])
 If (one > two) then g = j
end if

else //For words with length equal or larger than 14
 temp = da.GetDistance(s1[i], words[j], 100)
 If (len == -1) then len = temp, g = j
 If (temp < len) then len = temp,g = j
else if ((temp == len) & (j != g) & (len != 0)) then
 double one = DiceCoefficient(s1[i], words[g])
 double two = DiceCoefficient(s1[i], words[no])
 If)one > two) then g = j
 end If

 end If
end If

temp → -1, start2 → end2 + 1, j →start2, end2 → start2, no++
Next j
total_len → total_len + len, Int s → 0
For h = 0 to wordfile_length[g] step 1 do

s → s + Convert.ToChar(b[g, h])
Next h
 list1.Items.Add(s), len → -1, temp → -1, start → end + 1,
i → start, end→ start

Step5:
Int Result_Distance= total_len/s1.Length

End;

Function1: Double DiceCoefficient(string stOne, string
stTwo)//The Same Function Steps (used to compare between

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

12 http://dx.doi.org/10.14500/aro.10180

two strings using Dice-Coefficient and N-gram) as in
Algorithm(1)
Class DamerauLevensteinMetric//The Same Class Steps as
in Algorithm(2) with one different, which convert all Strings
to an array of bytes and deal with it on that basis

III. Results and Discussion
In this paper, all algorithms were implemented using C

sharp 2015 programming language and applied on CPU 2.60
GHz with 16 GB RAM. For measuring the distance between
two strings, many algorithms were tested to determine the
most efficient one according to the elapsed time for each one.
To test the system performance a text file that has size 171
KB which containing 15593 non-repeated words with lengths
ranging from 1 to 16 characters; it was extracted from
Oxford University Text Archive. This archive was designed
to represent a wide cross-section of current British English
(Burnard, 1976). In this paper, some of the non-repeated
words were extracted from this dataset to test the system
performance by typing ten words with different lengths for
each user query.

The conducted test includes words have lengths ranging
from 1 to 16, but for saving the space of this article only
two lists of results are presented. Table IV lists the elapsed
time for each method tested to the string distance measuring
process; these methods were tested on 10 words with the same
length in each time ranging from 1, 2, and 3. Table V lists
the elapsed time for each method tested to the string distance
measuring process; these methods were tested on 10 words
with same length=16. Furthermore, for comparison purpose,
the list given in Table VI shows the improved elapsed
processing time ratio between the similar types of methods
to find the best one for each type; it was computed using the
following equation:

Speed ratio=100*(T1−T2)/T1 (1)
Where T1 is the elapsed time for first method and T2 for

the second one.
Then, the measures showed best similarity results are combined
to increase the accuracy by overcoming the cases of similar
comparison results for many words. These combined measures
were used for measuring the string distance between pairs of
strings. The considered measures are:
• DN: It was obtained by integrating the N-gram method with

the dice coefficient method to increase the results accuracy
by making use of the sequence of letters in the given words.

• DADN: It was obtained by integrating the previous
mentioned DN method with Damerau–Levenshtein distance
method to increase the result accuracy; this integration
is aimed to take the advantage of Damerau–Levenshtein
efficiency and speed. Then, handling the situation of equal
single character movement results with a DN method to
decide which string is more similar to a given one.

• DAL: It is obtained by integrating Damerau–Levenshtein
distance with the longest common subsequence. The longest
common subsequence is used to handle the advantage of
Damerau–Levenshtein efficiency and speed. It handles

Ta
bl

e
IV

Th
e

8
of

 t
he

 S
tr

in
g

M
et

ri
cs

 M
et

ho
d

Te
st

ed
 u

sin
g

10
 W

or
ds

 w
it

h
D

if
fe

re
nt

 L
en

gt
hs

 (1
, 2

 a
nd

 3
 C

ha
ra

ct
er

s)
 a

nd
 M

ul
ti

pl
e

C
ha

ng
es

M
et

ho
d

na
m

e
W

or
d

le
ng

th
1

2
3

In
pu

t s
ta

tu
s

C
om

pl
et

e
w

or
ds

C
om

pl
et

e
w

or
ds

D
el

et
e

on
e

ch
ar

.
Ex

ch
an

ge
 tw

o
ch

ar
’s

Er
ro

r t
yp

in
g

in
 o

ne

ch
ar

.
In

se
rt

on
e

ch
ar

.
C

om
pl

et
e

w
or

ds
D

el
et

e
on

e
ch

ar
.

Ex
ch

an
ge

 tw
o

ch
ar

’s
Er

ro
r t

yp
in

g
in

 o
ne

 c
ha

r.
In

se
rt

on
e

ch
ar

.

Ja
ro

–W
in

kl
er

 d
is

ta
nc

e*
Ti

m
e

(µ
s)

80
17

.9
80

04
.5

60
04

.3
70

03
.8

90
23

.7
60

03
.9

99
91

.7
70

04
.2

70
05

.8
80

18
.7

90
06

D
is

ta
nc

e
0

0
0.

01
5

0.
03

3
0.

01
5

0.
01

78
0

0.
00

89
0.

01
75

0.
01

78
0.

00
67

Lo
ng

es
t c

om
m

on
 su

bs
tri

ng
**

Ti
m

e
(µ

s)
70

03
.8

80
03

.7
80

06
.1

60
03

.5
13

00
9.

2
80

04
.9

11
00

7
12

02
7.

5
10

97
3.

9
12

00
7

11
00

5.
1

Si
m

ila
rit

y
10

20
19

19
19

20
30

29
29

29
29

Le
ve

ns
ht

ei
n

di
st

an
ce

**
*

Ti
m

e
(µ

s)
70

23
.5

11
00

7.
8

11
02

6.
8

12
00

9
10

00
7.

1
10

00
6.

7
14

00
9.

9
12

02
7.

5
14

01
0.

4
13

99
5

13
00

9.
2

M
ov

em
en

ts
0

0
1

1
1

1
0

1
2

1
1

D
am

er
au

–L
ev

en
sh

te
in

 d
is

ta
nc

e*
**

Ti
m

e
(µ

s)
90

05
.2

11
00

7
10

00
7.

5
18

01
2.

8
11

00
7.

8
14

00
9.

9
16

01
1.

3
23

01
6.

4
14

99
3.

3
17

01
3

16
01

3
M

ov
em

en
ts

0
0

1
1

1
1

0
1

1
1

1
N

-G
ra

m
**

**
Ti

m
e

(µ
s)

50
03

.2
11

00
7.

4
99

88
.5

70
02

.6
60

03
.4

50
07

.1
10

00
5.

5
10

00
5.

5
90

06
.4

10
02

5
79

96
.6

Si
m

ila
rit

y
0

10
9

9
9

10
20

20
19

19
19

D
ic

e
co

ef
fic

ie
nt

**
**

*
Ti

m
e

(µ
s)

49
85

80
04

.9
70

04
.6

70
22

.7
90

02
80

05
.3

90
06

16
01

1.
7

10
00

6.
8

70
03

.8
90

23
D

is
ta

nc
e

1
1

0.
96

67
0.

95
0.

95
0.

96
67

1
0.

98
0.

93
33

0.
96

67
0.

95
O

ve
rla

p
co

ef
fic

ie
nt

**
**

*
Ti

m
e

(µ
s)

60
03

.5
70

05
.3

90
06

70
05

.8
80

05
.3

10
02

4.
5

11
00

6.
6

13
00

7.
6

10
02

5.
3

13
01

0
10

00
8.

3
D

is
ta

nc
e

D
iv

is
io

n
by

 z
er

o
1

D
iv

is
io

n
by

 z
er

o
0.

95
1

0.
96

7
1

1
0.

96
7

0.
96

7
0.

96
7

M
at

ch
in

g
co

ef
fic

ie
nt

**
**

**
Ti

m
e

(µ
s)

50
01

.6
90

08
80

05
.3

12
00

8.
1

90
06

.8
80

24
.3

10
00

6.
7

13
00

4.
9

90
06

90
23

90
06

D
is

ta
nc

e
0.

5
0.

5
0.

48
3

0.
47

5
0.

48
3

0.
48

3
0.

5
0.

49
0.

47
9

0.
48

3
0.

47
9

*M
at

ch
=0

, N
ot

 m
at

ch
=1

, *
*M

at
ch

=N
o.

 o
f a

ll
in

pu
t c

ha
r.

Fo
r a

ll
w

or
ds

, N
o

M
at

ch
=0

, *
**

M
at

ch
=0

, N
o

M
at

ch
=N

o.
 o

f a
ll

in
pu

t c
ha

r.
fo

r a
ll

w
or

ds
, *

**
*M

at
ch

=N
o

of
 id

en
tic

al
 p

ai
rs

=Σ
(e

ac
h

w
or

d
le

ng
th

−1
),

N
o

m
at

ch
=0

, *
**

**
M

at
ch

=1
, N

o
M

at
ch

=0
, *

**
**

*M
at

ch
=0

.5
, N

o
M

at
ch

=0

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10180 13

the cases of similar results for several words in the file to
a given word, and hence, to decide which string is more
similar to a given one. This measure checks the similar
character sequence and takes the word with larger values
of the sequence.

The suggested measures were tested on 10 words with
the same length in each time; they range from 1 to 16,
as shown in Figs. 1-5, for finding the most appropriate
algorithm for using in the next steps. The results showed
that applying the DADN algorithm is the fastest one
with maintaining the similarity results accuracy; the best
algorithm can be selected by calculating the accumulative
values for all execution times which obtained in the tests;
that is, DDN=12032518.4 (µs), DADN=9673223 (µs), and
DAL=9915123 (µs). The accumulative results showed that

DADN algorithm has the smallest execution time. After
identifying DADN as the best algorithm, we have modified
it to deal with numbers rather than strings which we called
it DADNEN for speeding up the process. The test results
of this algorithm indicated that the modified algorithm has
the positive impact on the results for words with length
ranging between 1 and 13 but has no effect on the words
with length more that. Hence, some conditions were used in
the modified algorithms to control the performance of this
algorithm, ODADNEN, with a wide range of word lengths
(i.e., making the system works flexible with all word lengths
as much as possible). The elapsed time for the tested results
for (DADNEN, ODADNEN) algorithms, which select the
most similar word for each word from the given word, are
shown in Table VII and Table VIII.

Table V
The 8 of the Distance String Metrics Methods Tested using 10 Words 16 Characters and Multiple Changes

Method name Word length 16

Input status Complete words Delete one char. Exchange two char’s Error typing in one char. Insert one char.
Jaro–Winkler distance* Time (µs) 76053.3 73032.2 76071 73051.1 71050.5

Distance 0 0.0013 0.0013 0.0013 0.0132
Longest common substring** Time (µs) 129091 143120.3 137078.1 139098.5 116082.6

Similarity 160 153 152 152 158
Levenshtein distance*** Time (µs) 140079.9 146105.4 134087.1 147121.2 127108.1

Movements 0 1 2 1 1
Damerau–Levenshtein distance*** Time (µs) 160113.8 172122.7 171121.2 169119 142080.9

Movements 0 1 1 1 1
N-gram**** Time (µs) 41032.7 42030.7 40026.5 39033.3 37026.7

Similarity 150 140 147 142 139
Dice coefficient***** Time (µs) 40046.6 41046.9 41027.2 42012.1 48033.4

Distance 1 0.92 0.938 0.92 0.9235
Overlap coefficient***** Time (µs) 41045.3 41033.1 40045 42028.7 46031.6

Distance 1 0.943 0.988 0.953 0.941
Matching coefficient****** Time (µs) 43048.7 56033.9 39013.9 40027.7 44049.4

Distance 0.5 0.471 0.494 0.476 0.471
*Match=0, Not match=1, **Match=No. of all input char. For all words, No Match=0, ***Match=0, No Match=No. of all input char. for all words, ****Match=No of identical
pairs=Σ(each word length−1), No match=0, *****Match=1, No Match=0, ******Match=0.5, No Match=0

Table VI
The Improvement Ratio of the Elapsed Processing Time Measured between the Previously Tested Methods using 10 Words with Different

Lengths (1, 2, 3, 16 Characters) and Multiple Changes

The speed ratio between methods Levenshtein and Damerau–Levenshtein (%) Dice and overlap (%) Dice and matching (%)

W.L. Input status
1 Complete words 28.22 20.44 0.34
2 Complete words −0.01 −12.49 12.54

Delete one char. −9.25 28.58 14.29
Exchange two char’s 50 −0.25 70.99
Error typing in one char. 10 −11.08 0.06
Insert one char. 40.01 25.23 0.24

3 Complete words 14.29 22.22 11.12
Delete one char. 91.37 −18.77 −18.78
Exchange two char’s 7.02 0.19 −10.01
Error typing in one char. 21.57 85.77 28.84
Insert one char. 23.09 10.92 −0.19

16 Complete words 14.31 89.92 7.5
Delete one char. 17.81 77.93 36.52
Exchange two char’s 27.62 85.42 −4.91
Error typing in one char. 14.96 73.89 −4.73
Insert one char. 11.78 47.92 −8.3

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

14 http://dx.doi.org/10.14500/aro.10180

Fig. 1. The new algorithms tested using 10 complete words with different lengths ranging from 1 to 6 characters

Fig. 2. The new algorithms tested using 10 words with different lengths ranging from 1 to 6 characters with deleting one character

Fig. 3. The new algorithms tested using 10 words with different lengths ranging from 1 to 6 characters with exchange two characters

The test results showed that the proposed implementation
of similarity measures reduces the processing time when
compared with the commonly implemented methods while

maintaining the results accuracy. Furthermore, it can be noticed
that the baseline of the execution time is increased dramatically
with the increase of words length (i.e., number of characters

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10180 15

the listed test results. A set of three combined similarity
measures was suggested, and their performance was tested;
these combined sets consist of some well-known similarity
measures. The test results indicated significant performance
improvements are attained when using these combined
measures to overcome the lack of accuracy and to save spend
time in the matching of misspelled words using the length
threshold of words matching.

Furthermore, in this paper, a simple enumeration method
was used together with the suggested combined measures
to get a new scheme that offers more nearly stable and fast
text similarity assessment; this scheme can be used for a
wide range of word length. Because these three combined
algorithms cause an enhancement in the processing results
accuracy by dealing with many different cases that produce
similar results (i.e. the same number of movements number
of the given compared words). This number was used for
measuring the distance between the given words. Hence,
to identify the closest word between the given words with
similar distances the modified Dice and N-gram algorithm
were used.

Fig. 4. The new algorithms tested using 10 words with different lengths ranging from 1 to 6 characters with one incorrect character

Fig. 5. The new algorithms tested using 10 words with different lengths ranging from 1 to 6 characters with insert one character

in each word) this due to the increase of matching operations
that required in each execution. The presented results in
Tables VII and VIII indicate that the elapsed time was slightly
improved for words have lengths ranging between [1...5 and
14...16]. While the time improvements are relatively large with
lengths between [6...13]; it depends on the processing time
ratio of DNDA algorithm and DNDAEN algorithm. Hence, to
achieve better performance results, the ODNDAEN algorithm
is provided; it is used to process words according to some
conditions depending on using the suggested enumeration
methods. For clarification, the results of processing time
improvement were explained using the processing time ratio
for the DNDAEN and ODNDAEN algorithms.

IV. Conclusion
A new set of measures was introduced in this article for
dealing with strings; it is based on combining some string
similarity measures beside to using the string enumeration
methodology. It reduces the elapsed time of each string
matching operation; this remark can be simply noticed in

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

16 http://dx.doi.org/10.14500/aro.10180

Ta
bl

e
V

II
I

Th
e

M
od

if
ie

d
D

A
D

N
EN

 T
es

te
d

U
sin

g
10

 W
or

ds
 w

it
h

D
if

fe
re

nt
 L

en
gt

hs
 R

an
gi

ng
 f

ro
m

10
 t

o
16

 C
ha

ra
ct

er
s w

it
h

M
ul

ti
pl

e
C

ha
ng

es

M
et

ho
d

na
m

e
D

A
D

N
EN

 (µ
s)

Sp
ee

d
ra

tio
n

be
tw

ee
n

D
A

D
N

EN
 (µ

s)
 a

nd

D
A

N
A

 (%
)

D
A

D
N

EN
s (

µs
)

Sp
ee

d
ra

tio
n

be
tw

ee
n

D
A

D
EN

s (
µs

) a
nd

D

A
N

A
 (%

)

M
et

ho
d

na
m

e
D

A
D

N
EN

 (µ
s)

Sp
ee

d
ra

tio
n

be
tw

ee
n

D
A

D
N

EN
 (µ

s)
 a

nd

D
A

N
A

 (%
)

D
A

D
N

EN
s (

µs
)

Sp
ee

d
ra

tio
n

be
tw

ee
n

D
A

D
EN

s (
µs

) a
nd

D

A
N

A
 (%

)

W
.L

.I
np

ut
 st

at
us

W
.L

.I
np

ut
 S

ta
tu

s

10
C

om
pl

et
e

w
or

ds
18

01
27

−3
.6

4
18

01
11

−3
.6

5
14

C
om

pl
et

e
w

or
ds

21
38

73
4.

77
20

41
27

−8
.7

4
D

el
et

e
on

e
ch

ar
.

17
71

44
1.

92
14

00
81

−1
9.

42
D

el
et

e
on

e
ch

ar
.

22
30

07
8.

18
18

81
32

7.
78

Ex
ch

an
ge

 tw
o

ch
ar

’s
19

91
24

24
.5

18
81

33
17

.6
3

Ex
ch

an
ge

 tw
o

ch
ar

’s
24

11
72

24
.8

7
20

81
48

−0
.4

9
Er

ro
r t

yp
in

g
in

 o
ne

 c
ha

r.
15

79
21

−8
.8

7
16

71
36

−3
.5

6
Er

ro
r t

yp
in

g
in

 o
ne

 c
ha

r.
22

71
61

9.
14

20
71

48
−2

.5
9

In
se

rt
on

e
ch

ar
.

17
21

24
−1

.6
7

17
41

24
−0

.5
2

In
se

rt
on

e
ch

ar
.

20
61

45
6.

2
18

91
15

−1
1.

22
11

C
om

pl
et

e
w

or
ds

19
81

79
7.

84
16

01
31

−1
2.

88
15

C
om

pl
et

e
w

or
ds

20
05

12
2.

23
17

41
42

−1
4.

2
D

el
et

e
on

e
ch

ar
.

19
11

03
9.

29
16

11
13

−7
.8

7
D

el
et

e
on

e
ch

ar
.

20
64

54
−9

.9
1

19
66

20
12

.2
2

Ex
ch

an
ge

 tw
o

ch
ar

’s
17

71
25

−1
0.

44
15

71
28

−2
0.

55
Ex

ch
an

ge
 tw

o
ch

ar
’s

19
92

74
1.

09
22

12
25

−3
.0

5 (C
on

td
...

)

Ta
bl

e
V

II
Th

e
M

od
if

ie
d

D
A

D
N

EN
 T

es
te

d
U

sin
g

10
 W

or
ds

 w
it

h
D

if
fe

re
nt

 L
en

gt
hs

 R
an

gi
ng

 f
ro

m
1

to
 9

 C
ha

ra
ct

er
s w

it
h

M
ul

ti
pl

e
C

ha
ng

es

M
et

ho
d

na
m

e
D

A
D

N
EN

 (µ
s)

Sp
ee

d
ra

tio
n

be
tw

ee
n

D
A

D
N

EN
 (µ

s)
 a

nd

D
A

N
A

 (%
)

D
A

D
N

EN
s (

µs
)

Sp
ee

d
ra

tio
n

be
tw

ee
n

D
A

D
EN

s (
µs

) a
nd

D

A
N

A
 (%

)

M
et

ho
d

na
m

e
D

A
D

N
EN

 (µ
s)

Sp
ee

d
ra

tio
n

be
tw

ee
n

D
A

D
N

EN
 (µ

s)
 a

nd

D
A

N
A

 (%
)

D
A

D
N

EN
s (

µs
)

Sp
ee

d
ra

tio
n

be
tw

ee
n

O
D

A
D

N
EN

 (µ
s)

an

d
D

A
N

A
 (%

)

W
.L

.I
np

ut
 st

at
us

W
.L

In
pu

t S
ta

tu
s

1
C

om
pl

et
e

w
or

ds
29

03
8

14
1.

82
12

00
8.

9
0.

01
6

C
om

pl
et

e
w

or
ds

83
54

8.
2

−2
6.

77
11

50
81

0.
88

2
C

om
pl

et
e

w
or

ds
37

67
0.

6
13

5.
28

16
01

1
−0

.0
1

D
el

et
e

on
e

ch
ar

.
62

72
7.

1
−1

8.
6

91
06

4.
2

18
.1

9
D

el
et

e
on

e
ch

ar
.

34
02

3.
8

14
0.

69
14

01
1.

5
−0

.8
9

Ex
ch

an
ge

 tw
o

ch
ar

’s
62

77
3.

3
−1

0.
39

12
20

87
74

.2
9

Ex
ch

an
ge

 tw
o

ch
ar

’s
41

03
4.

3
15

6.
4

11
99

4.
7

−2
5.

06
Er

ro
r t

yp
in

g
in

 o
ne

 c
ha

r.
65

60
6.

8
−4

.9
9

10
00

73
44

.9
3

Er
ro

r t
yp

in
g

in
 o

ne
 c

ha
r.

57
04

0.
2

21
6.

67
13

01
0.

8
−2

7.
77

In
se

rt
on

e
ch

ar
.

66
30

7.
9

−9
.2

4
98

06
8.

4
34

.2
4

In
se

rt
on

e
ch

ar
.

43
01

2
13

8.
77

12
02

3.
5

−3
3.

26
7

C
om

pl
et

e
w

or
ds

13
01

07
28

.7
3

15
31

07
51

.4
8

3
C

om
pl

et
e

w
or

ds
49

27
9.

6
69

.9
2

18
01

2.
8

−3
7.

9
D

el
et

e
on

e
ch

ar
.

10
05

52
10

.4
13

90
96

52
.7

2
D

el
et

e
on

e
ch

ar
.

44
04

1.
2

11
4.

04
17

02
1.

2
−1

7.
28

Ex
ch

an
ge

 tw
o

ch
ar

’s
10

29
64

−3
.8

4
13

50
96

26
.1

8
Ex

ch
an

ge
 tw

o
ch

ar
’s

42
58

6.
5

12
3.

94
17

01
1.

6
−1

0.
55

Er
ro

r t
yp

in
g

in
 o

ne
 c

ha
r.

13
10

92
−5

.7
7

14
91

07
7.

19
Er

ro
r t

yp
in

g
in

 o
ne

 c
ha

r.
40

02
9.

3
96

.7
8

22
03

0.
6

8.
3

In
se

rt
on

e
ch

ar
.

12
00

84
15

.3
9

13
40

96
28

.8
5

In
se

rt
on

e
ch

ar
.

43
03

8.
5

10
4.

81
20

01
3.

8
−4

.7
7

8
C

om
pl

et
e

w
or

ds
12

45
98

2.
91

13
50

98
11

.5
8

4
C

om
pl

et
e

w
or

ds
46

51
9.

1
49

.9
6

36
02

7.
5

16
.1

4
D

el
et

e
on

e
ch

ar
.

12
61

08
12

.7
13

30
94

18
.9

5
D

el
et

e
on

e
ch

ar
.

56
05

6.
9

51
.4

30
02

1.
7

−1
8.

92
Ex

ch
an

ge
 tw

o
ch

ar
’s

17
41

24
55

.7
1

14
61

04
30

.6
6

Ex
ch

an
ge

 tw
o

ch
ar

’s
49

05
2.

7
88

.6
6

25
03

7.
1

−3
.7

1
Er

ro
r t

yp
in

g
in

 o
ne

 c
ha

r.
13

67
84

19
13

60
80

18
.3

9
Er

ro
r t

yp
in

g
in

 o
ne

 c
ha

r.
55

21
9.

2
72

.4
5

30
04

0.
3

−6
.1

9
In

se
rt

on
e

ch
ar

.
14

51
03

27
.0

6
13

80
96

20
.9

2
In

se
rt

on
e

ch
ar

.
46

77
1.

4
55

.7
9

27
02

0.
3

−1
0.

01
9

C
om

pl
et

e
w

or
ds

20
41

46
39

.5
9

16
40

70
12

.1
9

5
C

om
pl

et
e

w
or

ds
85

06
0.

1
84

.7
9

43
03

2.
1

−6
.5

2
D

el
et

e
on

e
ch

ar
.

16
81

26
11

.6
6

13
40

81
−1

0.
96

D
el

et
e

on
e

ch
ar

.
55

05
3.

8
19

.6
45

03
0.

8
−2

.1
8

Ex
ch

an
ge

 tw
o

ch
ar

’s
17

59
71

29
.5

4
15

90
95

17
.1

2
Ex

ch
an

ge
 tw

o
ch

ar
’s

78
03

9.
7

73
.3

46
03

8.
2

2.
24

Er
ro

r t
yp

in
g

in
 o

ne
 c

ha
r.

14
16

42
−7

.4
1

16
30

96
6.

63
Er

ro
r t

yp
in

g
in

 o
ne

 c
ha

r.
55

65
4.

6
3

47
04

9.
9

−1
2.

94
In

se
rt

on
e

ch
ar

13
82

38
−9

.2
8

12
80

90
−1

5.
94

In
se

rt
on

e
ch

ar
.

59
42

5.
3

48
.5

5
48

02
0.

6
20

.0
4

.
D

A
D

N
EN

: D
ic

e
co

ef
fic

ie
nt

, N
-g

ra
m

, a
nd

 D
am

er
au

–L
ev

en
sh

te
in

 u
si

ng
 e

nu
m

er
at

io
n,

 O
D

A
D

N
EN

: O
pt

im
iz

ed
 d

ic
e

co
ef

fic
ie

nt
, N

-g
ra

m
e

an
d

D
am

er
au

–L
ev

en
sh

te
in

 u
si

ng
 e

nu
m

er
at

io
n,

 D
A

N
A

: D
ic

e
C

co
ef

fic
ie

nt
, N

-g
ra

m
e

an
d

D
am

er
au

–
Le

ve
ns

ht
ei

n
M

ea
su

re

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10180 17

References
Alberto, B., Paolo, R., Eneko, A. and Gorka, L., 2010. Plagiarism detection across
distant language Pairs. In: Proceedings of the 23rd International Conference on
Computational Linguistics. pp.37-45.

Bunke, H. and Bühler, U., 1992. Invariant shape recognition using string
matching. In: Proceedings of 2nd International Conference on Automation.
Robotics and Computer Vision, Singapore.

Burnard, L., 1976. The University of Oxford Text Archive University of Oxford.
Available from: http://www.ota.ox.ac.uk/catalogue/index.html.

Cortelazzo, G., Deretta, G., Mian, G.A. and Zamperoni, P., 1996. Normalized
weighted Levensthein distance and triangle inequality in the context of similarity
discrimination of bilevel images. Pattern Recognition Letters, 17(5), pp.431-436.

Cortelazzo, G., Mian, G.A., Vezzi, G. and Zamperoni, P., 1994. Trademark
shapes description by string-matching techniques. Pattern Recognition, 27(8),
pp.1005-1018.

Damerau, F.J., 1964. A technique for computer detection and correction of
spelling errors. Communications of the ACM, 7(3), pp.171-176.

Dice, L.R., 1945. Measures of the amount of ecologic association between
species. Ecology, 26(3), pp.297-302.

Fenz, D., Lange, D., Rheinländer, A., Naumann, F. and Leser, U., 2012. Efficient
similarity search in very large string sets. In: International Conference on
Scientific and Statistical Database Management. Springer Berlin, Heidelberg,
pp262-279.

Gomaa, W.H. and Fahmy, A.A., 2013. A survey of text similarity approaches.
International Journal of Computer Applications, 68(13), 13-18.

Hall, P.A. and Dowling, G.R., 1980. Approximate string matching. ACM
Computing Surveys (CSUR), 12(4), pp.381-402.

Kashiap, R.L. and Oommen, B.J., 1984. String correction using probabilistic
models. Pattern Recognition Letters, 2, pp.147-154.

Leusch, G., Ueffing, N. and Ney, H., 2003. A novel string-to-string distance
measure with applications to machine translation evaluation. In: Proceedings
of MT Summit IX, pp.240-247.

Martins, B., 2011. A supervised machine learning approach for duplicate
detection over gazetteer records. In: Proceedings of the 4th International
Conference on Geospatial Semantics. Springer, Berlin Heidelberg, pp.34-51.

Marzal, A. and Vidal, E., 1993. Computation of normalized edit distance and
applications. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(9), pp.926-932.

Mohri, M., 2003. Edit-distance of weighted automata: General definitions and
algorithms. International Journal of Foundations of Computer Science, 14(6),
pp.957-982.

Oommen, B.J., 1987. Recognition of noisy subsequences using constrained edit
distances. IEEE Transactions on Pattern Analysis and Machine Intelligence,5,
pp.676-685.

Pande, B.P., Pawan, T. and Dhami, H.S., 2013. Generation, implementation and
appraisal of an N-gram based stemming algorithm. ArXivpreprint arXiv 1312-
4824. Available from: https://arxiv.org/ftp/arxiv/papers/1312/1312.4824.pdf.

Patel, D., 2016. Study of distance measurement techniques in context to
prediction model of web caching and web prefetching. International Journal on
Soft Computing, Artificial Intelligence and Applications (IJSCAI), 5(1), 1-8.

Peng, H.L. and Chen, S.Y., 1997. Trademark shape recognition using closed
contours. Pattern Recognition Letters, 18(8), pp.791-803.

Pradhan, N., Gyanchandan, M. and Wadhvani, R., 2015. A review on text
similarity technique used in IR and its application. International Journal of
Computer Applications, 120(9), pp.29-34.

Rieck, K. and Wressnegger, C., 2016. Harry: A tool for measuring string
similarity. Journal of Machine Learning Research, 17(9), pp.1-5.

Er
ro

r t
yp

in
g

in
 o

ne
 c

ha
r.

17
01

21
−5

.3
3

18
61

47
3.

6
Er

ro
r t

yp
in

g
in

 o
ne

 c
ha

r.
23

01
62

15
.5

5
19

31
36

−1
6.

11
In

se
rt

on
e

ch
ar

.
18

61
32

4.
2

18
11

11
1.

39
In

se
rt

on
e

ch
ar

.
21

21
51

3.
41

17
21

22
-1

8.
1

12
C

om
pl

et
e

w
or

ds
18

41
30

−1
7.

72
19

11
20

−1
4.

6
16

C
om

pl
et

e
w

or
ds

20
91

49
5.

03
16

31
15

−1
.1

7
D

el
et

e
on

e
ch

ar
.

21
81

55
−8

.9
2

18
01

27
−2

4.
8

D
el

et
e

on
e

ch
ar

.
19

41
39

12
.8

17
01

22
2.

81
Ex

ch
an

ge
 tw

o
ch

ar
’s

24
21

69
23

.9
7

20
01

40
2.

46
Ex

ch
an

ge
 tw

o
ch

ar
’s

19
91

41
11

.1
8

18
41

48
9.

87
Er

ro
r t

yp
in

g
in

 o
ne

 c
ha

r.
23

31
64

20
.6

20
91

48
8.

18
Er

ro
r t

yp
in

g
in

 o
ne

 c
ha

r.
18

81
34

16
.0

4
17

81
20

4.
45

In
se

rt
on

e
ch

ar
.

22
27

81
3.

55
19

81
43

−7
.9

1
In

se
rt

on
e

ch
ar

.
18

88
60

8.
9

18
11

43
−8

.7
4

13
C

om
pl

et
e

w
or

ds
22

51
61

17
.8

20
81

52
8.

9
D

el
et

e
on

e
ch

ar
.

19
21

55
−4

.4
7

20
21

40
0.

5
Ex

ch
an

ge
 tw

o
ch

ar
’s

21
61

55
6.

94
21

31
50

5.
45

Er
ro

r t
yp

in
g

in
 o

ne
 c

ha
r.

20
39

81
−1

7.
14

19
71

39
−1

9.
92

In
se

rt
on

e
ch

ar
.

23
41

67
9.

34
18

31
28

−1
4.

5
D

A
D

N
EN

: D
ic

e
co

ef
fic

ie
nt

, N
-g

ra
m

 a
nd

 D
am

er
au

–L
ev

en
sh

te
in

 u
si

ng
 e

nu
m

er
at

io
n,

 D
A

N
A

: D
ic

e
C

co
ef

fic
ie

nt
, N

-g
ra

m
e

an
d

D
am

er
au

–L
ev

en
sh

te
in

 M
ea

su
re

Ta
bl

e
V

II
I

(C
on

ti
nu

ed
)

M
et

ho
d

na
m

e
D

A
D

N
EN

 (µ
s)

Sp
ee

d
ra

tio
n

be
tw

ee
n

D
A

D
N

EN
 (µ

s)
 a

nd

D
A

N
A

 (%
)

D
A

D
N

EN
s (

µs
)

Sp
ee

d
ra

tio
n

be
tw

ee
n

D
A

D
EN

s (
µs

) a
nd

D

A
N

A
 (%

)

M
et

ho
d

na
m

e
D

A
D

N
EN

 (µ
s)

Sp
ee

d
ra

tio
n

be
tw

ee
n

D
A

D
N

EN
 (µ

s)
 a

nd

D
A

N
A

 (%
)

D
A

D
N

EN
s (

µs
)

Sp
ee

d
ra

tio
n

be
tw

ee
n

D
A

D
EN

s (
µs

) a
nd

D

A
N

A
 (%

)

W
.L

.I
np

ut
 st

at
us

W
.L

.I
np

ut
 S

ta
tu

s

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

18 http://dx.doi.org/10.14500/aro.10180

Sehgal, V., Getoor, L. and Viechnicki, P.D., 2006. Entity resolution in geospatial
data integration. In: Proceedings of the 14th Annual ACM International Symposium
on Advances in Geographic Information Systems. ACM, New York, NY, pp.83-90.

Sellers, P.H., 1980. The theory and computation of evolutionary distances: Pattern
recognition. Journal of Algorithms, 1(4), pp.359-373.

Wang, J., Li, G. and Feng, J., 2014. Extending string similarity join to tolerant
fuzzy token matching. ACM Transaction Database Systems, 39(1), pp.1-45.

Winkler, W.E., 1999. The state of record linkage and current research problems.
In: Statistical Research Division, US Census Bureau. Available from: http://www.
census.gov/srd/www/byname.html.

	PointTmp
	OLE_LINK1

