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Abstract—Carborundum, also known as silicon carbide which
containing carbon and silicon, is a semiconductor. Molecular
topological properties of physical substances are important tools to
investigate the underlying topology of these substances. Ev-degree
and ve-degree based on the molecular topological indices have been
defined as parallel to their corresponding classical degree based
topological indices in chemical graph theory. Classical degree based
topological properties of carborundum have been investigated
recently. As a continuation of these studies, in this study, we compute
novel ve-degree harmonic, ve-degree sum-connectivity, ve-degree
geometric-arithmetic, and ve-degree atom-bond connectivity, the
first and the fifth harmonic molecular topological indices of two
carborundum structures.

Index Terms—Carborundum, Harmonic indices, Ve-degree
topological indices.

I. INTRODUCTION

This chemical graph theory study of molecules through
topological indices enables to understand and to
give information about underlying topology of these
molecules. These studies are important part of quantitative
structureproperty relationship/quantitative structure—
activity relationship studies in chemistry. Topological
indices are grouped into five categories: Classical degree
based topological indices such as Zagreb indices, distance
based topological indices such as Wiener index, eccentric
connectivity indices, classical degree, and distance based
topological indices such as Gutman index, and eigenvalue
based topological indices such as Estrada index and matching
based topological indices such as Hosoya index. In recent
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5 years period, studies of calculating topological indices of
molecules have been rising.

Carborundum (silicon carbide), an inorganic compound has
a crystal structure like that of diamond and is almost as hard.
It is used as an abrasive for cutting, grinding, and polishing,
as an antislip additive, and as a refractory. Carborundum is
not a natural mineral, but rather is produced in a number
of industrial processes. Carborundum has a wide range of
industrial uses; in electronic applications including high
voltage/high temperature semiconductor and grains bonded
together to form extremely hard ceramics, which are used
in car brakes and clutches, and plates in bulletproof vests.
Stored energy release in neutron irradiated silicon carbide
was investigated in (Snead, et al., 2019). 3-D Wire bondless
switching cell using flip-chip-bonded silicon carbide power
devices were investigated by Seal, Glover and Mantooth
(2018). Reddy, Kesavan and Ramnath (2018), mechanical
properties of aluminum 6061-silicon carbide, boron carbide
metal matrix composite, were investigated. Real-time
junction temperature sensing for silicon carbide MOSFET
with different gate drive topologies and different operating
conditions was studied in (Van der Broeck, et al., 2018).
Effect of carbon nanoparticle reinforcement on mechanical
and thermal properties of silicon carbide ceramics was studied
in (Kazmierczak-Balata and Mazur, 2018). Topologically
protected interface phonons in two-dimensional nanomaterials:
Hexagonal boron nitride and silicon carbide were investigated
by Jiang, Wang and Park (2018). Relaxation of residual
microstress in reaction bonded silicon carbide was studied in
(Wing and Halloran, 2018). Manufacturing isotropic carbon
fiber preforms for multilayered silicon carbide composites
with a pyrolytic carbon interphase was investigated in (Mei,
et al., 2018). Ton irradiation-induced novel microstructural
change in silicon carbide nanotubes was studied by Taguchi,
Yamamoto and Ohba (2018).

Topological indices of nanostructures have been conducting
by many researches recently in chemical graph theory such as
(Ediz, 2010), (Ediz, 2011), (Ediz, 2013), (Munir, et al., 2016),
(Gao, Asif and Nazeer, 2018), (Anjum and Safdar, 2019), and
(Shao, et al., 2019).
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Molecular classical degree based topological properties of
silicon carbon structures have been investigated recently in
(Imran, et al., 2018). The authors calculated general Randic,
Zagreb types indices, geometric arithmetic index, atom-bond
connectivity (ABC) index, fourth ABC and fifth geometric
arithmetic index of Si,C.-I[p,q] and Si,C-ll[p,q]. As a
continuation of this study, generalized first and multiplicative
Zagreb indices, the multiplicative version of the ABC index
and the generalized multiplicative geometric arithmetic index
of Si,C,-I[p,q] and Si,C,-Il[p,q] have been investigated in
(Kwun, et al., 2018). Reverse Zagreb and reverse hyper-
Zagreb Indices for silicon carbide have been computed by
Virk, Jhangeer and Rehman (2018).

Harmonic index was defined in (Zhong, 2012). Novel
harmonic indices have been defined by Ediz, Farahani and
Imran (2017). Novel ev-degree and ve-degree concepts were
defined in (Chellali, et al., 2017). Moreover, novel ev-degree
and ve-degree topological indices have been defined in (Ediz,
2017; Sahin and Ediz, 2018; Ediz, 2018).

The aim of this study to investigate the first, fifth, sixth
harmonic, and ve-degree atom-bond connectivity (ve-ABC),
geometric-arithmetic  (GA), sum-connectivity, harmonic
topological properties of Si,C.-I[p,q] and Si,C,-1I[p,q].

II. PRELIMINARIES

In this section, we give some basic and preliminary
concepts which we shall use later. A graph G=(V,E) consists
of two nonempty sets J and 2-element subsets of J, namely
E. The elements of }" are called vertices and the elements of
E are called edges. For a vertex v, deg(v) show the number of
edges that incident to v. The set of all vertices which adjacent
to v is called the open neighborhood of v and denoted by
N(v). If we add the vertex v to N(v), then we get the closed
neighborhood of v, N[v].

And now we give the definitions of ev-degree and ve-
degree concepts which were given in Chellali, et al. (2017).

Definition 1 (ve-degree) Let G be a connected simple
graph and vEV(G). The ve-degree of the vertex v, deg (Vv),
equals the number of different edges that incident to any
vertex from the closed neighborhood of v.

We also can restate the definition 1 as follows: Let G be
a connected simple graph and vEV(G). The ve-degree of
the vertex v is the number of different edges between the
other vertices with a maximum distance of two from the
vertex v.

Definition 2 (ev-degree), let G be a connected graph and
e=uv€E(G). The ev-degree of the edge e, deg, (e), equals the
number of vertices of the union of the closed neighborhoods
of u and v.

The authors in (Chellali, et al. 2017) also can give
the definition 2 as follows: Let G be a connected
graph and e=uv€E(G). The ev-degree of the edge e,
deg (e)=degu+tdegv-n, where n, means the number of
triangles in which the edge e lies in.

Definition 3 (ve-ABC index), let G be a connected graph
and e=uv€E(G). The ve-ABC index of the graph G defined as;
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ABCW(G) _ z deg, u+deg, v )
uveE(G) deg, udeg, v
Definition 4 (ve-degree GA [ve-GA] index), let G be a
connected graph and vEV(G). Ve-GA index of the graph G

defined as;
2,/deg  udeg, v

GA (G) = ZMVEE(G) degw_,u + degvev

Definition 5 (ve-degree harmonic (ve-H) index), let G be
a connected graph and uv€E(G). ve-H index of the graph G
defined as;

meG)=y 2 3)

wek(G) deg u+deg,,v

2

Definition 6 (ve-degree sum-connectivity [ve-y] index),
let G be a connected graph and uv€E(G). Ve-y index of the
graph G defined as;

7" (G) = ZWGE(G) (deg,u+ degvev)_l/ 2 4

Let G be a simple connected graph G=(V,E). Harmonic
indices may be defined as;
2

Hggneral (G) = ZuveE(G) Qu + Qv

where O is a unique parameter which is acquired from the
vertex u€V(G).

Definition 9 (First Harmonic Index), the first kind of this
Harmonic indices by considering O, to be the degree of the
vertex u:

2
1,(G)= ZuveE(G) d, +d, ©)

Definition 10 (Second Harmonic Index), the second kind
of this class can be defined by considering Q0 to be the
number n of vertices of G lying closer to the vertex u than
to the vertex v for the edge uv of the graph G:

H,y(G)=), : )

quE(G) nu —+ nv

©)

Definition 11 (Third Harmonic Index), the third type of
this class can be defined by considering O, to be the number
m of edges of G lying closer to the vertex u than to the
vertex v for the edge uv of the graph G:

Hy(G)=Y, ; @®)

MVEE(G) mu + mv

Definition 12 (Fourth Harmonic Index), the fourth type
of this class can be defined by considering Q to be the
eccentricity of the vertex u:

2
Hy(G)= 3, ©)

uveE(G) e te

Definition 13 (Fifth Harmonic Index), the fifth type of this
class can be defined by considering O, to be the

2
HS(G) = ZMVEE(G) Su +SV

(10)
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Definition 14 (Sixth Harmonic Index), and the sixth type
of this class can be defined by considering O to be the

M HveN(u) v
2
Hy(G) = ZWSE(G)—Mu ¥ (11).

II1. METHODS

We use combinatorial computing method such as vertex
partitioning method, edge partitioning strategy, degree
counting strategy, discrete partitioning, and discrete counting
strategy to compute our results.

IV. REsuLTS

In Imran, et al. (2018), two-dimensional lattices of
Si,C,-I[p,q] and Si,C,-l[p,q] are given in the following
Figs. 1 and 2, respectively.

Note that, two rows are being connecting, carbon atom C
is brown and silicon atom Si is blue and red lines (edges)
connects the upper and lower rows in Fig. 1. Si,C,-I[p,q] has
10 pg vertices and 15pg—2p—3¢ edges.

Note that, two rows are connecting and green lines (edges)
connect the upper and lower rows in Fig. 2. Furthermore, red
lines show the connection between the unit cells in Fig. 2.
Si,C,-1I[p,q] has 10pg vertices and 15pg—2p—3q edges.

From Fig. 1, we give the edge partition of Si,C,-I[p,q]
with respect to ve-degrees in the following Table I.

From Fig. 2, we give the edge partition of Si,C, ~II[p,q]
with respect to ve-degrees in the following Table II.

And we begin to compute topological indices for Si,C.-I[p,q].

Theorem 1

The ve-degree, the first harmonic and the fifth harmonic
topological indices of the Si,C,-I[p,q] are

ABCV€(Si2C3_I) =:(lqu—14p—21q+20)x\/%+q_l

+(p+2"‘4)x\/3zz+(2q+2)x\/%+(4p+2q—7)x\/%
. +(2p+2g- S)x\/g +(2p+2q- 3)x\P +(2p+4q-7)
R R R R R

GA™ (Si,C;—1)=15pg—12p—17q+17
+(2q+2)x§+(4p+2q—7)x2m+(2q—2)
443 4J_ (2p+20-3)

x—+(2 +2q-5)x
12f+i
7

37
3

° xT+(2p+4q—7)x1—

L5 4T 230 414

8 11 11 15

Fig. 1. Two-dimensional structure of Si,
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C,-1[4,2].

TABLE I
VE-DEGREES OF THE END VERTICES OF SI,C,-1[P,Q]

Fig. 2. Two-dimensional structure of Si,C,-II[5,2].

Edge Ve-degrees of end vertices of edge Number of edges
2,1) (4,2) 1
3.1 (5,3) 1
(2,2) (5.5 pt2q
(3,2) (5,5) 1
3.2) (7,4) 1
(3,2) (7,5) 2q+2
(3,2) (5,6) 1
3.2) (7,6) 4p+2q-7
(3,2) (8,6) 2q-2
3.2) (8.,5) 2p+2g-5
(3.3) (8,7) 1
(3.3) (8.8 pt2q-4
(3,3) 9.,7) 2p+2g-3
(3.3) 9.8) 2p+4q-7
(3.3) 9,9) 15pq-14p-21g+20
TABLE 11

VE-DEGREES OF THE END VERTICES OF SL,C,-11[P,Q]
Edge Ve-degrees of end vertices of edge Number of edges
2,1) (3,2) 2
3.1 (7,3) 1
2.2) 43) 2
(2,2) (5.4) 2
2.2) (5,5) 2p+2q-4
(3.,2) (7,5) 2p+2q
(3.2) (7,6) 2p+2g-2
(3.2) (8,6) 2p+2q-6
(3.2) (8.,5) 2p+2q-6
(3.,3) 8,7) 2
(3.3) (8,8) 2p+2q-8
(3.3) (7,7) 2
(3,3) 9,7) 2p+2q-3
(3.3) 9.,8) 2p+2g-5
(3.3) 9,9) 15pq-19p-19q+23
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H" (Si,Cy— 1) = (15pg—14p —21g +20) After simplification we get _
xé+(2p+4q—7)x%+(p+2q—4)x% =(15Pq‘141"21q+2°)xg
+(2p+2q—3)x%+(4p+2q—7)x%+(2q—2) +q—1+(p+2q—4)x\/3zz+(2q+2)x\g
. (2p+2q—5)x%+(q+l)x%+(p+2q+l) +(4p+2q—7)x\/%+(2p+2q—5)x\/§
2,2 +(2p+2q- 3)x\/§ +(2p+49-7)x

1 2

SR NN

1)=(15pq—14p—21q+20)

Zve(SizQ_
1 1
x—=+(2p+4q9-7)x—=+(3p+4q-7) Again from Fig. 1, Table I and the definition of ve-GA
32 17 : S
index, we can write directly;
xl+(2p+2q—5)xL+(2q—2)xL ) /deg udeg, v
4 J13 V14 o e e I
- deg, u+deg, v
1 1 uveE(Si,C;—I) ve ve
° +(4p+2q—7)x—+(q+1)x—+(p+2q+l)
NE 5 N IENE 055 | 2%
1 1 1 > 1 =1x —+1 +(p+ ) —t1lx—
NI NCIENTINIE
xle/f_8+(2q+2)x%+1x21fo+(4p+2q—7)
1
H,(Si,C;—1)=(15pg—9p—-13g+9)x—=+(6p+8q—5
1(802C; = 1) = (15pg ~=9p ~13¢ +9)x 3 +(6p +8¢ -5) x2m+(2q—2)x2 43 +2q_s)xz\/%
b ( 5 1) 1 13 14 13
*x=++(p+2g+1)x—
5 2 +1x2\1/5576+(p+2q—4)x21664+(2p+2q—3)x—2\1/66_3
Hs(Si,Cy—1)=(15pg—14p—21q+20)
+(2p+4q—7)x2 72 +(15pq—14p—21q+20)x2\/8_1
1 2 1
x—+(2p+4q—7)xﬁ+(p+2q—4)x§
1 2 =15pq—-14p-21g+20+ p+2g—-4+p+2q
+(2p+2q—3)x—+(4p+2q—7)x—
8 13 +(2q+2)x@+(4p+2q—7)x2m+(2q—2)
+(2q—2)xl+(2p+2q—5)x£+(q+l)x— 6 13
7 13 3 W3 4410 37
1 2 11 2 2 xT+(2p+2q—5)x 3 +(2p+2q—3)xT
+(p+2g+)x—+ =+ -+ -+ —+—
5 11 3 4 11 15 1242 242 2415
, . +(2p+4q-T7)x + +
Proof of Theorem 1. From Fig. 1, Table I and the definition 17 3 8
of ve-ABC index, we can write directly; W7 2030 414
+ +
degveu+degvev—2 B 11 11 15
After simplification, we get it;

ABC* (Si,Cy—1) = \/
uveE SIZC3 degveudeg"e
= 15pq—12p—17q+17+(2q+2)xg+(4p+2q—7)

—1x\/:+1x\/: p+2q x\/:+1x\/:+1x\/: =
242 W3 (2p+2q-5)x N;_O

2 +(29-2)x —+

2q+2x/—+1x /— 4p+2q 7x,f— X 13
3ﬁ 122

+(2p+2q—3)xT+(2p+4q—7) =

(Zq Z)x /% 2p+2q 5 x /—+l /
" " L2 215 4T 2430 414
H(pr2g=4)x [ o+ (2p+20-3)x, | 2+ (2p+49-7) 38 11 11 15
Now, we prove the ve-H index of Si, C,-I. From Fig. 1,
Table I and the definition of ve-H index, we can write

[15 [11
X, — +(15pg—-14p—-21g+20)x,|—
72 ( ) 42 directly;
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ve o = 2
H™(8i,Cy—1) = zuveE(Si2C3—1)m

2 2 2 2 2
=lx—+lx—+(p+2g¢)x—+1Ix—+1x—+(2¢+2)x—
xg Hig Hlpr2a)ripa b e (204 2)x

2 2 2
+1xﬁ+(4p+2q—7)xﬁ+(2q—2)xﬁ+(2p+2q—5)
2p+
4q-17

1 2
Dx=+2
+(q+ )x3+11

2 2 2 2
xﬁ+le+(p+2q—4)xg+(2p+2q—3)xg+

2 2
xﬁ+(15pq—l4p—21q+20)xﬁ

:%+%+(p+2q+l)x%+
+(4p+2q—7)x%+(2q—2)X%+(2P+2q—5)

2

X—+—=
13 15
+(2p+4q—7)x%+(15pq—14p—21q+20)xé

+(p+2q—4)x%+(2p+2q—3)x%

After some simplifications, we get;

=(lSpq—l4p—21q+20)x$+(2p+4q—7)x_
+(P+2q-4)x%+(2p+2q—3)x%+(4p+2q_7)

2 1 2
xE+(2q—2)x7+(2p+2q—5)xﬁ+(q+l)x—

1 1 2 2
+_
3 4 11 15

Now, we prove the ve-y index of Si, C,-I. From Fig. 1,
Table I and the definition of ve-y index, we can write directly;

ZVE (S12C3 - 1) = ZuVEE(SiZQ n (degveu + degvev)

=lx—=+Ix— !

\/_ \/7 (p+2q) \/7+1x\/7+1x\/1>
+(2q+2)xT+1xT+(4p+2q—7)
1 1
+(2q—2)xﬁ+(2p+2q—5)xﬁ+1xﬁ

+(p+2q—4)x%+(2p+2q—3)x—+(2p+4q—7)

-1/2

x +(15pg—14p—21g+20)x

1 1
17 V18

_\/— J—
\/_ ( +2q—7)x

(2p+2q 5)x\/1_3 \/1_5 (

+(2p+4q—7)x%+(15pq—14p—21q+20)x%

1 2
2q+1)x——=+— 1
+(p+2g+1)x TO+ ,_11+(q+ )

1

1
ﬁ+(2q— 2)xﬁ

3p+4qg - 7)x%

69

After necessary simplifications, we get;

:(ISpq—l4p—21q+20)x$+(2p+4q—7)
x#"'(?’p+46]—7)X%+(2p+2q—5)x%
+(Zq—2)xﬁ+(4p+2q—7)x%+(q+l)

1 1 2 1
+2g+1 =+
R e s
Now, we prove the first harmonic index of Si, C,-I. From

Fig. 1, Table I and the definition of the first harmonic index,

we can write directly;
2
~1)= ZquE(GSi2C3—I) d, +d,

H, (S, C;
= 1x§+1x%+(p+2q)x%+lx§+lx%+(2q+2)

2 (2p+ 2
5 \29g-5) 5

+1x%+(p+2q—4)x%+(2p+2q—3)x%

x%+1x§+(4p+2q—7)x§+(2q—2)x

+(2p+4q—7)x%+(15pq—14p—21q+20)x%
After necessary simplifications, we can write that;
:§+%+(p+2q)x%+§+§+(2q+2)x§+%
2 2 2
+(4p+2q—7)x§+(2q—2)x§+(2p+2q—5)x§

2p+4q]

—+(p+2q—4)x§+(2p+2q—3)x%+(_7

—+(15pq—14p—21q+20)x%

=(lSpq—9p—l3q+9)x%+(6p+8q—5)x2+

+(p+2q+l)x%

And now, we prove the fifth harmonic index of Si, C.-1.
From Fig. 1, Table I and the definition of the fifth harmonic
index, we can write directly;

. 2
HS (S12C3 - 1) = ZuveE(SiZCS_[) Su + SV

+(29+2)
2 2p
12 |42 -5

2 2 2 2
xE+1xE+(p+2q 4)xg+(2p+2q 3)xE

2 2 2 2 2
=lx—+Ix—+(p+2¢)x—+Ix—+1x—
¥t Hlpr2a)ripa g ey

2 2 2
x5+1x—1+(4p+2q 7)xE+(2q 2)

+(2p+4q—7)x%+(15pq—14p—21q+20)x%
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1 1 1 2 1
—§+Z+(p+2q+l)x§+ﬁ+(q+l)x§
2 2
+ﬁ+(4p+2q—7)xﬁ+(2q—2)x—
+(2p+2q—5)x£+£+(p+2q—4)x—
13 15
+(2p+2q—3)x%+(2p+4q—7)
x%+(15pq—14p—21q+20)xé
After necessary simplifications, we can write that;
=(15pq—14p—21q+20)x$
+(2p+4q—7)x%+(p+2q—4)
—+(2p+2q—3)xé+(4p+2q—7)x%
+(2q—2)x%+(2p+2q—S)x%-i-(q-i-l)x—
2 1.1 2 2

1
Hp+2q+)x—4+—+—-+—+—+—
(pq)511341115

And now, we begin to compute topological indices for
Si,C-1l[p.q].

Theorem 2

The ve-degree, the first and the fifth harmonic topological
indices of the Si,C.-Il[p,q] are

ABC" (Si,Cy —IT) = (15pg —19 p —19¢ + 23)

x%+p+q—3+(2p+2q—5)x\/§

(2p+2q 3)x\/g (2p+2q 8))6\/3z2

(2p+2q 6)x\/% (2p+2q 2)x\/i+
10

(2p+2q>x\/3: 2p+2q 4x\/:

el

GA” (Si,C; —11)=15pg—15p—-15g+(2p+2q)

Ty
21

2*1/_ +(2p+29-2)x 2\1/;_2+(2p+2q—6)
x§+(2p+2q—6)x8\1/31,70+(2p+2q—3)
x%+(2p+2q 5)x 12‘f+13 4‘5/6

21 82 85 16 f

5 7 9 15
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v (si,C - ) =241, 6,4 _4)xt
H*(Si,Cy II)—5+5+7+9+(2p+2q 4)x5

1 (2p
X—+
+2q 6) 7 \+2g-6

(p+q)x +(2p+2q 2)
o2 4, L[2r 2p 2
X—+— x=
13 15 +2q 8 +2q 3 +2q—5 17

+(15pg—19p—19¢g +23)x é
2 1 2 2 2 2
(S, Cy— ) = —— S
N A TN AR TR
2p+2 2p+2
—4 10 3= 13
2p+ 1 1 (p+q) 1
. T X—+(2p+2g—6)x—+ —
2q—6j NTRAR A A (—4 j 2
[P L (2r+ 2 (15pg=19p) 1
X—F— X——— X——
2¢q-3) 16 (2¢-5) 17 \-19¢+23 ) 32

H,(Si,C;—1I)=5+p+q+(8p+8g—14)x=

+(15pq—13p—13q+9)x—

2
HS(GSi2C3—Il)=%+é+é+g+(+§q_4jxé

7
2 2 2
+(p+q)xl+ % RN b LI
3 (#2¢g-2) 13 (+29-6) 7 (+2g-6

2 4 (2p 1 (2p 1 (2p 2
X—+—+ x—+ xX—+ x—
13 15 (+29-8) 8 (+2¢-3) 8 \+2¢-5) 17

+(15pq—19p—19q+23)x

O | —

Proof of Theorem 2
From Fig. 2, Table II and the definition of ve-ABC index,
we can write directly;

' deg  u+deg, v—2
e 3 _ ve ve
ABC™ (Si,Cy ~ 1) ZWEE(SI‘ZCS—I) \/ deg, udeg,,v

—2x\/:+1x /—+2x f—+2x f— 2p+2q 4
10 11
—+(2p+2 +(2p+29-2)x,|—
x‘/zs (2p q)X./35 (2p+2q- )x./
(2p+2q 6)x /— (2p+2q 6 f +2 /
2 +2 8 —+2 —
(2p+20-8)x \/ (+2q 3} Vo3

/ 15pg—19
+(2p+2q—5)x 1—5+ Pd P X E
72 | -19g+23 81
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After necessary simplifications we get;

:(15pq—19p—19q+23)xf+p+q—3+(2p+2q—5)

(2p+2q)x\/E +(2p+29- 4)x\/:+f
\/7+2x\/: \f \/7+4\/7

And now, we prove the ve-GA index of Si, C,-II. From
Fig. 2, Table II and the definition of ve-GA index, we can

write directly;
2,/deg, udeg, v

GA™ (SiyCy —IT) = ZuveE(Si2c3—11) deg u+deg, v

=15pq—-19p—-19g+23+2+2p+2g—-8+2p+2q—4
2
PN TR NC N 235 (2p
12 +2qg -2

5 5 7 9
43 810
13

+(2p+2¢ _6)XT+(2 p+2q—6)x
1242
1

67
7

+(2p+2¢ —3)x—6+(2 p+2g—5)x

+(2p+2q)x

242
X
13
+16\/_
15

After necessary simplifications, we can write that;

+(2p+29-2)

8\/_

=15pq—15p—15q+(2p+2q)x

. 242 43
13

+(2p+2¢ —6)xT+(2 p+2q—6)x

1242
x_

)17

+(2p+2q—3)x%+(2p

+2g-5
13+4\/g+\/ﬁ+8 2+8\/§+16\/7
5 5 7 9 15
And now, we prove the ve-H index of Si, C,-Il. From
Fig. 2, Table II and the definition of ve-H index, we can
write directly;

H(8i,Cy -

2
)_ zuveE(Si2C3—Il)m
2 2 2 2 2
= 2x§+1xﬁ+2x7+2x§+(2p+2q—4)xl—
+(2p+Zq)x%+(2p+2q—2)x%+(2p+2q_6)x_
2 2
+H(2p+2g=6)x 2+ 2v 4 (2p+ 2 - 8)x
2 2
x4 (2p 2 =3)x T+ (2p+2g-5)x

+(15pq—19p—19q+23)x1£
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After necessary simplifications, we can write that,

4 1 6 4 1 1
—g+g+7+§+(2p+2q—4)x§+(p+q)x§

+(2p+2q—Z)X%+(2p+2q—6)x%+(2p+2q—6)

2 4 1 1 (2p
x—+—+(2p+2g-8)x—+(2p+2g-3

13 15 (27+24-8) 8 (2p+24-3)x¢ 8 (+2q—5]
2 |
xﬁ+(15pq—l9p—l9q+23)x§

And now, we prove the ve-y index of Si, C.-Il. From
Fig. 2, Table II and the definition of ve-y index, we can write
directly;

Zve (Si2C3 -1/2

- H) - zuveE(GSi2C3—[I) (deg,u +deg,.v)

1 1 1 1
=2x—+Ilx—+2x=+2x—+(2p+29g—-4)x—
5t 2yt 2y (2 24

+(2p+2q)xé+(2p+2q—2)x%+(2p+2q—6)
1 1 1
xﬁ+(2p+2q—6)xE+2xE+(2p+2q—8)

1 1 1
xg+2xﬁ+(2p+2q—3)xE+(2p+2q—5)

x%+(15pq—l9p—l9q+23)x—

After some necessary simplifications, we can directly write
that;
2 1 2 2

:—+—+—+—+i+i+(2 +2q—4)
NN TN RN TN PR

1 1 1
—+(p+qg)x—=+(2p+2q-2)x—

NG (p Q)x\/g (2p+2¢q )x\/ﬁ

+(2p+2q—6)x !

1
—+(2p+2¢-6)x—
MR T

+(p+q—4)x%+(2p+2q—3)xL+(2p+2q—5)

X

Ji6
xi+(15pq—19p—19q+23)xL
J17 32

And now, we prove the first harmonic index of Si, C,-IL
From Fig. 2, Table II and the definition of the first harmonic
index, we can write directly;

| 2
Hl (S12C3 - II) = ZquE(SiZCJ_H) du + dv

+2q—4

2 2 (2p
+(2p+2g)x—=+(2p+2g-2)x—+
(2p+20)x5+(2p+20-2)x3 [+2q—6j
2 2
xz+ P x£+2xz+ P x%+2xg
+2¢-8 6

2p+ 2 (2p 2 (15pg—19p) 2
+ x=+ x=+ x=
2g-3) 6 (+2g-5) 6 \-19¢+23 6
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2
:2x2+1x%+2x£+2xz+ P xz
3 4 4 4 4
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After necessary simplifications, we get;

:5+p+q+(8p+8q—14)x%+(15pq—13p—13q+9)x%

And now, we prove the fifth harmonic index of Si, C,-II.
From Fig. 2, Table II and the definition of the fifth harmonic
index, we can write directly;

Hy(GSi,Cy—11) = | 2

uveE(GSi,C3—1I) Su + Sv

2 2 2 2 2
—2x§+1xm+2x7+2x§+(2p+2q—4)xm
+(2p+2q)x%+(2p+2q—2)x%+(2p+2q—6)

2 2 2 2
xﬁ+(2p+2q—6)xﬁ+2xﬁ+(2p+2q—8)xE+
2x£+(2p+2q—3)x£+(2p+2q—5)xi

14 16 17

+(15pq—19p—19q+23)x%

After necessary simplifications, we get;

4 1 6 4 1 1
—g+g+7+§+(2p+2q—4)x§+(p+q)x§
+(2p+2q—2)x%+(2p+2q—6)x%

2 4 1
+(2p+2q—6)xE+E+(2p+2q—8)x§

1 2
+(2p+2q—3)x§+(2p+2q—5)xﬁ

+(15pq—19p—19q+23)x$

V. CONCLUSIONS

In this study, we calculated the ve-ABC, ve-GA, ve-H, and
ve-y, the first harmonic and the fifth harmonic molecular
topological properties of the two silicon carbide structures:
Si, C,-I and Si, C.-II. These calculations enable to understand
and to give information about the underlying topology of Si,
C,-I and Si, C-IL

Mathematical properties of ev-degree, ve-degree, and
novel harmonic topological indices are interesting studies for
further studies. It is also interesting to compute ve-degree
based topological indices and novel harmonic indices of
naostructures and molecules for further studies.
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