High Reflectivity Compounds of Cadmium Sulfide/Magnesium Fluoride Distribution Bragg Reflectors
Design, Simulation, and Comparative Analysis
DOI:
https://doi.org/10.14500/aro.12258Keywords:
Compounds of cadmium sulfide/magnesium fluoride, Distribution Bragg reflector, Full width at half maximum, Q-factor, Reflectance, StopbandAbstract
This work investigates the optical performance of a distributed Bragg reflectors (DBRs) structure, designed with a Matlab program using inorganic compounds of cadmium sulfide (CdS) and magnesium fluoride (MgF2 ) with a central operational wavelength of 650 nm. Because CdS (high index) and MgF2 (low index) have very different refractive indices, the proposed DBR can reflect light effectively using fewer alternating layers. The Transfer Matrix Method simulation method indicates that the DBR structure reaches its maximum reflectivity with just six-layer pairs, emphasizing its optical efficiency and structural simplicity. A comparative analysis with other DBR structures demonstrates the superior performance of CdS/MgF2 DBR, which exhibits a broader usable stopband at around 181.82 nm, the highest bandwidth of 298.49 nm, and a relatively moderate Q-factor (2.18), indicative of an enhanced reflector response. These results establish CdS/MgF2 DBR as highly efficient reflectors that are well-suited for optical systems functioning in the visible spectrum.
Downloads
References
Adachi, S., 1989. Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, Al x Ga1− x As, and In1− x Ga x As y P1− y. Journal of Applied Physics, 66, pp.6030-6040. DOI: https://doi.org/10.1063/1.343580
Alias, M.S., Alatawi, A.A., Chong, W.K., Tangi, M., Holguin-Lerma, J.A., Stegenburgs, E., Shakfa, M.K., Ng, T.K., Albadri, A.M., and Alyamani, A.Y., 2018. High reflectivity YDH/SiO2 distributed Bragg reflector for UV-C wavelength regime. IEEE Photonics Journal, 10, pp.1-8. DOI: https://doi.org/10.1109/JPHOT.2018.2804355
AL-Kuhaili, M., 2004. Optical properties of hafnium oxide thin films and their application in energy-efficient windows. Optical Materials, 27, pp.383-387. DOI: https://doi.org/10.1016/j.optmat.2004.04.014
Aspnes, D., Kelso, S., Logan, R., and Bhat, R., 1986. Optical properties of Al x Ga1− x As. Journal of Applied Physics, 60, pp.754-767. DOI: https://doi.org/10.1063/1.337426
Aspnes, D.E., and Studna, A., 1983. Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev. Physical Review B, 27, p.985. DOI: https://doi.org/10.1103/PhysRevB.27.985
Assafli, H.T., Abdulhadi, A.H., and Nassir, W.Y., 2016. Design high efficient reflectivity of distributed bragg reflectors. Iraqi Journal of Laser, 15, pp.13-18.
Barker, A. Jr., and Ilegems, M., 1973. Infrared lattice vibrations and free-electron dispersion in GaN. Physical Review B, 7, p.743. DOI: https://doi.org/10.1103/PhysRevB.7.743
Bieniewski, T., and Czyzak, S., 1963. Refractive indexes of single hexagonal ZnS and CdS crystals. Journal of the Optical Society of America, 53, pp.496-497. DOI: https://doi.org/10.1364/JOSA.53.000496
Butt, M.A., Fomchenkov, S.A., Ullah, A., Habib, M., and Ali, R.Z., 2016. Modelling of multilayer dielectric filters based on TiO2/SiO2 and TiO2/MgF2 for fluorescence microscopy imaging. Компьютерная Оптика, 40, pp.674-678. DOI: https://doi.org/10.18287/2412-6179-2016-40-5-674-678
Byrnes, S.J., 2016. Multilayer Optical Calculations. arXiv preprint arXiv:1603.02720. Chaqmaqchee, F.A., 2016. Optical design of dilute nitride quantum wells vertical cavity semiconductor optical amplifiers for communication systems. ARO-The Scientific Journal of Koya University, 4, pp.8-12. DOI: https://doi.org/10.14500/aro.10076
Chaqmaqchee, F.A.I., 2012. Electrically Pumped GaInNAs Vertical Cavity Semiconductor Optical Amplifiers for Operation at 1.3 [mu] m Wavelength. University of Essex, England. DOI: https://doi.org/10.1186/1556-276X-6-104
Chaqmaqchee, F.A.I., 2022. Temperature stable 980 nm InGaAs/GaAsP vertical cavity surface emitting lasers for short-reach links. Journal of Optoelectronics and Advanced Materials, 24, pp.312-317.
Chaqmaqchee, F.A.I., Salh, S.A.A., and Sabri, M.F.M., 2020. Optical analysis of 1300 nm GaInNAsSb/GaAs vertical cavity semiconductor optical amplifier. Zanco Journal of Pure and Applied Sciences, 32, pp.87-92. Coldren, L.A., Corzine, S.W., and Mashanovitch, M.L., 2012. Diode Lasers and Photonic Integrated Circuits. John Wiley & Sons, New Jersey. DOI: https://doi.org/10.21271/ZJPAS.32.2.9
Cui, M., Guo, C., Yang, Z., Chen, L., Dai, Y., Xu, H., Guo, W., and Ye, J., 2022. Conductive SiO2/HfO2 distributed Bragg reflector achieved by electrical breakdown and its application in GaN-based light emitters. Journal of Applied Physics, 131, p.045301. DOI: https://doi.org/10.1063/5.0074868
Dai, J., Gao, W., Liu, B., Cao, X., Tao, T., Xie, Z., Zhao, H., Chen, D., Ping, H., and Zhang, R. 2016. Design and fabrication of UV band-pass filters based on SiO2/Si3N4 dielectric distributed bragg reflectors. Applied Surface Science, 364, pp.886-891. DOI: https://doi.org/10.1016/j.apsusc.2015.12.222
Dodge, M.J., 1984. Refractive properties of magnesium fluoride. Applied Optics, 23, pp.1980-1985. Fern, R., and Onton, A., 1971. Refractive index of AlAs. Journal of Applied Physics, 42, pp.3499-3500. DOI: https://doi.org/10.1063/1.1660760
Gao, B., George, J.P., Beeckman, J., and Neyts, K., 2020. Design, fabrication and characterization of a distributed Bragg reflector for reducing the étendue of a wavelength converting system. Optics Express, 28, pp.12837-12846. DOI: https://doi.org/10.1364/OE.391080
Haglund, E.P., Kumari, S., Westbergh, P., Gustavsson, J.S., Baets, R.G., Roelkens, G., and Larsson, A., 2016. 20-Gb/s modulation of silicon-integrated short-wavelength hybrid-cavity VCSELs. IEEE Photonics Technology Letters, 28, pp.856-859. DOI: https://doi.org/10.1109/LPT.2016.2514699
Jambunathan, R., and Singh, J., 1997. Design studies for distributed Bragg reflectors for short-cavity edge-emitting lasers. IEEE Journal of Quantum Electronics, 33, pp.1180-1189.
Jambunathan, R., and Singh, J., 2002. Design studies for distributed Bragg reflectors for short-cavity edge-emitting lasers. IEEE Journal of Quantum Electronics, 33, pp.1180-1189. DOI: https://doi.org/10.1109/3.594882
Kogelnik, H., and Shank, C.V., 1972. Coupled-wave theory of distributed feedback lasers. Journal of Applied Physics, 43, pp.2327-2335. DOI: https://doi.org/10.1063/1.1661499
Kumar, R., Thakor, K., Gupta, S., Maripeddi, R., Nag, D., and Laha, A., 2019. Design and Optimization of Dielectric DBR for VCSEL, Targeting Emission Range of 520-550nm. Technical Report. Indian Institute of Technology Bombay. Ma, G., Shen, J., Zhang, Z., Hua, Z., and Tang, S.H., 2006. Ultrafast all-optical switching in one-dimensional photonic crystal with two defects. Optics Express, 14, pp.858-865. DOI: https://doi.org/10.1364/OPEX.14.000858
Macleod, H.A., and Macleod, H.A., 2010. Thin-film Optical Filters. CRC Press, United States. Malitson, I.H., 1965. Interspecimen comparison of the refractive index of fused silica. Journal of the Optical Society of America, 55, pp.1205-1209. DOI: https://doi.org/10.1364/JOSA.55.001205
Miao, W.C., Hong, Y.H., Hsiao, F.H., Chen, J.D., Chiang, H., Lin, C.L., Lin, C.C., Chen, S.C., and Kuo, H.C., 2023. Modified distributed Bragg reflectors for color stability in InGaN red micro-LEDs. Nanomaterials (Basel), 13, p.661. DOI: https://doi.org/10.3390/nano13040661
Min, T., Zhuo-Ying, L., Yao-Lin, H., Jing-Chen, J., and Ye-Hui, P., 2022. Optimal design of thermal emitter based on DBR cavity model in thermal photovoltaic technology. Results in Optics, 9, p.100322. DOI: https://doi.org/10.1016/j.rio.2022.100322
Mohammed, Z.H., 2019 The fresnel coefficient of thin film multilayer using transfer matrix method tmm. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p.032026. DOI: https://doi.org/10.1088/1757-899X/518/3/032026
Muallem, M., Palatnik, A., Nessim, G.D., and Tischler, Y.R., 2015. Room temperature fabrication of dielectric bragg reflectors composed of a caf2/zns multilayered coating. ACS Applied Materials and Interfaces, 7, pp.474-481. DOI: https://doi.org/10.1021/am506531p
Palo, E., and Daskalakis, K.S., 2023. Prospects in broadening the application of planar solution‐based distributed Bragg reflectors. Advanced Materials Interfaces, 10, p.2202206. DOI: https://doi.org/10.1002/admi.202202206
Pastrňák, J., and Roskovcová, L., 1966. Refraction index measurements on AlN single crystals. Physica Status Solidi (B), 14, pp.K5-K8. DOI: https://doi.org/10.1002/pssb.19660140127
Polyanskiy, M.N., 2024. Refractiveindex. info database of optical constants. Scientific Data, 11, p.94. DOI: https://doi.org/10.1038/s41597-023-02898-2
Rodríguez Lamoso, I., and Preu, S., 2025. High reflectivity, compact, and widely tunable distributed bragg reflector based on silicon-rich SiN x-SiO y at 80° C PECVD. Applied Sciences, 15, p.3330. DOI: https://doi.org/10.3390/app15063330
Sakoda, K., and Sakoda, K., 2005. Optical Properties of Photonic Crystals. Springer, Berlin. Sale, T.E., 1995. Vertical Cavity Surface Emitting Lasers. Research Studies Press, Wiley, Taunton, Somerset, England, New York. DOI: https://doi.org/10.1007/b138376
Sediq, K.N., Muhammadsharif, F.F., and Muhammad, H.A., 2022. A study on tuning the optical properties of stacked SiN/SiO2 mirrors in distributed Bragg’s reflectors. Journal of Optics, 51, pp.937-942. DOI: https://doi.org/10.1007/s12596-022-00846-8
Sediq, K.N., Muhammadsharif, F.F., Ramadan, S.O., and Sedeeq, S.Z., 2023. Design and study of a nanocavity-based one-dimensional photonic crystal for potential applications in refractive index sensing. Aro-The Scientific Journal of Koya University, 11, pp.95-98. DOI: https://doi.org/10.14500/aro.11298
Shaaban, I.E., Samra, A.S., Muhammad, S., and Wageh, S., 2022. Design of distributed bragg reflectors for green light-emitting devices based on quantum dots as emission layer. Energies, 15, p.1237. DOI: https://doi.org/10.3390/en15031237
Sharhan, A.A., 2020. Transfer matrix mathematical method for evaluation the DBR mirror for light emitting diode and laser. Journal of Physics: Conference Series. IOP Publishing, p.012018. DOI: https://doi.org/10.1088/1742-6596/1535/1/012018
Troitskiĭ, Y.V., 2002. The energy conservation law for optical two-port devices. Optics and Spectroscopy, 92, pp.555-559. DOI: https://doi.org/10.1134/1.1473596
Valligatla, S., Chiasera, A., Varas, S., Bazzanella, N., Rao, D.N., Righini, G.C., and Ferrari, M., 2012. High quality factor 1-D Er3+-activated dielectric microcavity fabricated by RF-sputtering. Optics Express, 20, pp.21214-21222. DOI: https://doi.org/10.1364/OE.20.021214
Xu, K., Meng, Y., Chen, S., Li, Y., Wu, Z., and Jin, S., 2021. All-dielectric color f ilter with ultra-narrowed linewidth. Micromachines, 12, p.241. DOI: https://doi.org/10.3390/mi12030241
Yariv, A., 1997. Optical Electronics in Modern Communications. Oxford University Press, Oxford.
Yeh, P., and Hendry, M., 1990. Optical Waves in Layered Media. American Institute of Physics, United States. DOI: https://doi.org/10.1063/1.2810419
Zhang, C., Elafandy, R., and Han, J., 2019. Distributed Bragg reflectors for GaN-based vertical-cavity surface-emitting lasers. Applied Sciences, 9, p.1593. DOI: https://doi.org/10.3390/app9081593
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jihad A. Swara, Faten A. Chaqmaqchee, Khalid N. Sediq

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who choose to publish their work with Aro agree to the following terms:
-
Authors retain the copyright to their work and grant the journal the right of first publication. The work is simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0]. This license allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors have the freedom to enter into separate agreements for the non-exclusive distribution of the journal's published version of the work. This includes options such as posting it to an institutional repository or publishing it in a book, as long as proper acknowledgement is given to its initial publication in this journal.
-
Authors are encouraged to share and post their work online, including in institutional repositories or on their personal websites, both prior to and during the submission process. This practice can lead to productive exchanges and increase the visibility and citation of the published work.
By agreeing to these terms, authors acknowledge the importance of open access and the benefits it brings to the scholarly community.
Accepted 2025-08-09
Published 2025-09-05